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Quasi-Globally Optimal and Real-Time Visual
Compass in Manhattan Structured Environments

Pyojin Kim , Haoang Li , and Kyungdon Joo

Abstract—We present a drift-free visual compass for estimating
the three degrees of freedom (DoF) rotational motion of a camera
by recognizing structural regularities in a Manhattan world (MW),
which posits that the major structures conform to three orthog-
onal principal directions. Existing Manhattan frame estimation
approaches are based on either data sampling or a parameter
search, and fail to guarantee accuracy and efficiency simultane-
ously. To overcome these limitations, we propose a novel approach
to hybridize these two strategies, achieving quasi-global optimality
and high efficiency. We first compute the two DoF of the camera
orientation by detecting and tracking a vertical dominant direction
from a depth camera or an IMU, and then search for the optimal
third DoF with the image lines through the proposed Manhattan
Mine-and-Stab (MnS) approach. Once we find the initial rotation
estimate of the camera, we refine the absolute camera orientation
by minimizing the average orthogonal distance from the endpoints
of the lines to the MW axes. We compare the proposed algorithm
with other state-of-the-art approaches on a variety of real-world
datasets including data from a drone flying in an urban environ-
ment, and demonstrate that the proposed method outperforms
them in terms of accuracy, efficiency, and stability. The code is avail-
able on the project page: https://github.com/PyojinKim/MWMS

Index Terms—Vision-based navigation, computer vision for
transportation, sensor fusion, RGB-D perception.

I. INTRODUCTION

E STIMATING the 3-DoF rotational motion of autonomous
agents is a fundamental problem for many applications in

computer vision and robotics [1]–[3]. It is well-known that the
rotational drift error and nonlinearity during the 3-DoF cam-
era orientation estimation are the main sources of positioning
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Fig. 1. In an urban area, the proposed method can serve as a drift-free visual
compass for drones flying over a city by tracking the structural regularities
– MF with respect to the camera frame (top). We conduct a single-view
3D reconstruction with 3D box priors [5] using the proposed method, which
consistently reconstructs the interior 3D structures with a single RGB image
(bottom).

inaccuracy [4] in visual odometry (VO) and simultaneous local-
ization and mapping (SLAM). Thus, it is extremely important to
obtain accurate and drift-free estimates of the rotational motion
of autonomous agents for visual navigation in indoor or outdoor
urban environments.

In particular, practical robotic platforms and computer vision
applications (Pokémon GO, IKEA Place AR) rely heavily on
proprietary visual-inertial odometry (VIO) and SLAM methods
such as Apple ARKit and Google ARCore to obtain a reliable 3-
DoF rotational motion of the camera. Although they can estimate
the accurate roll and pitch angles (2-DoF) by utilizing the gravity
direction [6] or the surface normal to the ground plane [7], they
still suffer from a drift error over time for the rotation about the
vertical axis, the yaw angle as shown in Fig. 10.

Several recent studies [8]–[10] have focused on drift-free
3-DoF rotation estimation by utilizing the structural regularities
in urban and indoor environments consisting of three mutu-
ally orthogonal dominant directions called a Manhattan world
(MW) [11]. To compute the absolute 3-DoF camera orientation,
the state-of-the-art approaches are based on data sampling [12]–
[14], a parameter search [15], [16], or a combination of both [9].
The data sampling-based approaches hypothesize the Manhattan
frame (MF) candidates using the sampled image lines and/or sur-
face normals, providing high efficiency and stability. They fail
to guarantee global optimality in terms of the number of inliers
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due to sampling randomness and uncertainty. The parameter
search-based methods directly inspect the infinite MF hypoth-
esized over the rotation search space, and continuously narrow
down the search space. While they can achieve global optimality,
their efficiency and effectiveness are limited in real-time robotic
applications due to the high-dimensional search space and heavy
computational load.

To address these issues, we propose a novel real-time visual
compass that hybridizes the data sampling and efficient param-
eter search strategies to accurately and efficiently recognize the
spatial regularities of orthogonal structured environments (see
Fig. 1). We first detect and track the normal vector to the ground
plane (or gravity) from an RGB-D camera or an IMU as a vertical
dominant direction (VDD) to compute the 2-DoF of the MF.
We exploit the mine-and-stab (MnS) [10] approach to search
for the optimal third DoF as a horizontal dominant direction
(HDD) with the image lines. Thanks to our new MnS approach,
which takes full advantage of the periodicity of the Manhattan
structure, we can obtain an accurate and drift-free 3-DoF camera
orientation in a “quasi-globally” optimal manner. Specifically, it
guarantees the retrieval of the maximum number of inliers under
the condition that the 2-DoF (VDD) is constrained. Furthermore,
we refine the initial rotation estimate by minimizing the average
orthogonal distance of the inlier lines parallel to the MW axes.
Extensive evaluations show that our method can stably track the
drift-free 3-DoF rotational motion of the camera in real-time
in a variety of challenging indoor and outdoor environments.
It can also be utilized as a visual compass in computer vision
applications such as single-view 3D reconstruction with 3D box
priors [5] as shown in Fig. 1. Our main contributions are as
follows:

1) We propose a novel visual compass to estimate accurate
and drift-free rotational motion of the camera jointly from
both the ground plane (or gravity) and lines by utilizing
the structural regularities of the MW.

2) We leverage the surface normal to the ground plane or
gravity direction to efficiently compute the 2-DoF of the
camera orientation, accelerating our rotation search by
reducing the rotation search space.

3) We propose an efficient MnS approach utilizing the
periodicity of the Manhattan structure to search for the
optimal third DoF of the camera orientation, achieving
quasi-global optimality in terms of maximizing the num-
ber of inlier lines.

In addition, we evaluate our visual compass on the ICL-
NUIM [17] and York Urban [18] datasets, as well as on a new
dataset from a low-cost drone traversing an outdoor urban area,
showing accurate and drift-free rotation estimates.

II. RELATED WORK

Research on the estimation of accurate rotational motion
utilizing structural regularities such as the Manhattan [11], At-
lanta [19] worlds has been actively studied in computer vision
and robotics communities over the past decade. We can classify
the existing approaches into two main categories with respect
to the algorithms used: data sampling [8], [12], [13] and a
parameter search [10], [15], [16], [20].

Data sampling-based approaches exploit RANSAC and its
variants [21] given the lines from the RGB images or surface
normals from the depth images. In [12], [13], the authors sample
three image lines several times to hypothesize finite MF rotations

in RANSAC, then retrieve the best MF hypothesis satisfying
most inlier lines. Tardif et al. [22] utilize numerous MF hy-
potheses to define the image line descriptors and cluster lines
concerning the MW using J-Linkage [21], a variant of RANSAC.
Since these line-based sampling methods are sensitive and un-
stable in the presence of spurious or noisy line segments, they
are unsuitable for a robust orientation estimation of autonomous
agents.

Recent studies [23], [24] have utilized the distribution of
sampled surface normals to estimate dominant orthogonal di-
rections in an MW from a depth sensor such as Intel RealSense
and Microsoft Kinect. Although these surface normal-based
sampling approaches demonstrate a stable and accurate rotation
estimation [8], they require a dense surface normal distribution
and at least two orthogonal planes must always be visible [25],
which are unsuitable for use in outdoor robotic platforms such as
flying drones in an open urban environment as shown in Fig. 1.
Kim et al. [14] exploit the line and plane primitives together to
estimate the drift-free camera orientation in an MW. However,
this method still requires random sampling and is evaluated
only in indoor datasets. Note that the above sampling-based
approaches cannot guarantee global optimality in terms of the
number of inliers due to sampling uncertainty.

The parameter search-based methods rely on a branch-and-
bound (BnB) [15], [26] or the recently proposed mine-and-stab
(MnS) [10]. Bazin et al. [15], [26] search for the optimal 3-DoF
MF rotation satisfying the most image lines by iteratively nar-
rowing down the rotation search space. Joo et al. [16] recently
present a highly efficient BnB approach using the distribution of
surface normals from a depth camera. While these BnB-based
methods can guarantee global optimality in terms of maximizing
the number of inliers, it takes more than three seconds per
image to find the best solution. Since dense surface normals
may be unavailable in practice due to the limited range of
the depth camera, BnB-based methods lead to a relatively low
applicability in various environments for indoor and outdoor
robotic applications. Li et al. [10] recently propose an efficient
parameter search method called the MnS algorithm; however, it
is applied and tested only to determine the horizontal dominant
directions of the Atlanta world.

Overall, existing approaches based on data sampling or a
parameter search have failed to achieve high efficiency, stability,
and accuracy simultaneously. Recent studies [9], [27] have tried
hybridizing these two strategies, but they are still dependent
on the computationally expensive BnB and unstable for use in
robotic applications because they rely heavily on lines only. Our
method overcomes these limitations thanks to the combination
of data sampling and the newly proposed MnS approach, which
takes full advantage of the periodicity of the Manhattan world.

III. BACKGROUND ON 3D GEOMETRY

A. Gaussian Sphere

The geometric interpretation of the image lines and surface
normals is performed on a Gaussian sphere, which is a virtual
unit sphere centered at the optical center of the camera. We
project a line in an image onto a Gaussian sphere as a great
circle (the intersection of the Gaussian sphere and the plane
defined by the center of projection (COP) and the line, see Fig. 2).
The great circle of each line can be expressed as a unit normal
vector (gray dots). We transform all image lines into the normal
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Fig. 2. Geometric relationships between the parallel lines and MW on the
Gaussian sphere. We map the image lines onto the normal vectors of the great
circles (gray dots). Each Manhattan direction and its corresponding line is drawn
with the same color.

TABLE I
LIST OF ABBREVIATIONS

vectors of the great circles on a Gaussian sphere. The great
circles from the parallel lines intersect at two antipodal points
called a vanishing direction (VD) in the MW, which posits that
every line and plane is perpendicular to one of the axes of a
single coordinate system. We call this fixed coordinate system
a Manhattan frame (MF). We summarize the abbreviations in
Table I. The orthogonal surface normals of the MW planes
exactly match the three orthogonal VDs defined by the parallel
lines in an ideal MW, which are the basis of a MF. All normal
vectors from the parallel lines pointing in the same direction
should lie on the same great circle, and we utilize this geometric
regularity to infer the MF in the proposed MnS approach.

B. Rotational Motion With the Manhattan Frames

We represent the 3-DoF rotational motion of the camera and
Manhattan frames as a 3× 3 rotation matrix R ∈ SO(3) in a
Euclidean 3D space. We express the Manhattan frame (MF)
with respect to the camera frame as:

RcM =
[
r1 r2 r3

] ∈ SO(3), (1)

where each column rj denotes the x-, y-, and z-axes of the
MF expressed in the camera frame. Our goal is to recognize
the 3-DoF orientation of the MW for each k-th camera frame
(RckM). Since the MW direction is fixed in a 3D space, we can
track the 3-DoF rotational motion of the camera with respect to
the fixed MF in a drift-free manner as follows:

Rc1ck = Rc1MRckM
−1, (2)

Fig. 3. Tracked VDD (blue axis) of the ground plane (blue) given the density
distribution of the surface normals (black dots). We project the relevant surface
normals inside a conic section of the VDD into the tangential plane to perform
the mean shift [14].

where the notation follows a subscript cancellation rule. We
assume that we can obtain the exact Manhattan frame directions
from the initial camera frame.

IV. PROPOSED METHOD

We propose a quasi-globally optimal and efficient rotational
motion estimation method that requires a single vertical domi-
nant direction (VDD) and at least a single image line following
the MW directions for the horizontal dominant direction (HDD).
The proposed method consists of three steps: 1) detection and
tracking of the vertical dominant direction (2-DoF) from the
depth images or IMU gravity direction, 2) a search for the
optimal horizontal direction (1-DoF) with the lines from the
RGB images, and 3) refining this initial rotation estimate with
the inlier parallel lines. An overview of the proposed approach
is shown in Fig. 4.

A. Detection and Tracking of Dominant Direction

The proposed method requires only a single vertical dominant
direction (VDD) such as the normal vector to the ground plane or
gravity direction, which is a more practical condition for robotic
applications compared to the conditions in [23], [24], which
requires dense surface normals and the visibility of at least two
orthogonal planes.

For structured environments with an RGB-D camera, we
employ the dominant plane tracking approach in [14], in which
we briefly summarize the pipeline (for full details, refer to [14]).
We first detect a dominant plane1 from a depth image using a
three-point RANSAC. We track the detected dominant plane
with a mean shift based on the tangent space Gaussian MF
model, given the density distribution of the surface normals on
the Gaussian sphere S2 [24] in Fig. 3.

We can alternatively detect and track the gravity direction
as a VDD from an IMU where the use of the depth camera
is infeasible due to the limited sensing range such as a drone
flying over the city as shown in Fig. 4. We can estimate the
gravity direction vector using Mahony and Madgwick filters [28]
through raw IMU measurements, or obtain it directly from
commercial platforms and libraries, e.g., Apple and Android
devices. Any sensor, device, or algorithm that can detect and
track the VDD can be used in combination with the proposed
method.

1Without loss of generality, the dominant plane in any direction can be treated
as a VDD in an indoor structured environment.
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Fig. 4. We first detect/track the VDD (blue axis) to determine two orientation angles, employing the gravity direction vector from an IMU as a VDD. The proposed
MnS method searches for the optimal 1-DoF horizontal direction (red and green axes) by effectively utilizing the periodicity of the MW, achieving quasi-global
optimality. We refine the initial rotation estimate by minimizing the distance from the endpoints of the parallel and orthogonal lines.

Fig. 5. 3D side view (left) and top orthographic view (right) of the Gaussian
sphere with the tracked VDD (blue) and the projected i-th image line (gray
dot). The sphere point pi (gray dot) lies on the horizontal dominant plane π.
We expand pi into the spherical cap ωi, the candidate region to obtain the
candidate interval [θli, θ

r
i ].

B. Manhattan Mine-and-Stab (MnS) Algorithm

We propose a new and efficient Manhattan MnS approach that
effectively utilizes the periodicity of the MW to search for the
optimal third DoF of the MF rotation, i.e., a single horizontal
dominant direction (HDD) given the VDD from the previous
section. In [10], the MnS is only used to find the horizontal
dominant directions of the Atlanta world, and not for rotational
motion tracking. Although the Atlanta MnS [10] can accurately
find multiple VDs in the Atlanta world, it is unsuitable for
real-time applications because it includes the computationally
expensive BnB module.

We briefly summarize the basic idea of the MnS (for full
details, refer to [10]). In a one-dimensional space, all features
treated as inliers within a specific range called the candidate
interval are gathered as shown on the right side of Fig. 6. Given
the candidate intervals mined above, our goal is to find an optimal
probe that stabs as many candidate intervals as possible, i.e.,
maximizing the number of inliers.

1) Parameterization and Candidate Region: First, we pa-
rameterize the vertical dominant direction (VDD) v with the
azimuth α ∈ [−π

2 ,
π
2 ] and elevation β ∈ [−π

2 ,
π
2 ]:

v (α, β) =
[
cosα cosβ, sinα cosβ, sinβ

]�
, (3)

where α and β denote the 2 DoFs of the MF rotation obtained in
Section IV-A. We define a unit vector u = [− sinα, cosα, 0]�,
which is the basis reference vector representing the horizontal

rotation orthogonal to the VDD. We parameterize the 1-DoF
horizontal dominant direction (HDD) h by rotating the basis
vector u around the VDD v with an unknown-but-sought angle
θ ∈ [0, π

2 ] as follows:

h (α, β, θ) =
[
[a1, b1] t, [a2, b2] t, [a3, b3] t

]�
, (4)

where {ai, bi}3i=1 are a function of α, β, and t is a function of θ
(for full details and derivations, refer to [10] or the supplemen-
tary materials). Since we already know the VDD, we only need
to find θ using the distribution of the lines (gray dots) on the
Gaussian sphere as shown in Fig. 5.

We parameterize the horizontal dominant plane π whose
normal vector is the HDD h(α, β, θ), passing through the center
of projection (COP) c:

π (α, β, θ) : [x, y, z] · h (α, β, θ) = 0, (5)

The normal vectors of the great circles from the parallel lines
are orthogonal to the corresponding HDD h as shown in Fig. 2.
Thus, for a set of noise-free inlier image lines associated with
the same HDD, the sphere point of the normal vector of the i-th
image line on the Gaussian sphere pi should lie on the same
horizontal dominant plane π. In practice, however, the sphere
point pi cannot strictly lie on the horizontal dominant plane due
to the inaccuracy and noise of the 2D line position in the image.
To consider this error, we expand the sphere point pi into the
spherical cap ωi on the Gaussian sphere, called the candidate
region in Fig. 5. The geometric interpretation of the candidate
interval [θli, θ

r
i ]of the sphere pointpi indicates that the horizontal

dominant plane π intersects with the boundary of the candidate
region, which is called the candidate region edge ei.

We define the 3D secant plane μi to express the spherical
cap ωi candidate region mathematically. The normal vector
to the 3D secant plane μi is ni, which is the normal vector
of the great circle of the corresponding i-th image line. The
distance between the 3D secant plane μi and the sphere center
(COP) c is cos ε where ε is a factor determining the size of the
candidate region, defined by the user. We can find the edge ei
of the candidate region ωi as the intersection of the secant plane
μi and the Gaussian sphere S2 [10]. We re-define the inlier
line if the candidate region ωi intersects with the horizontal
dominant plane π. For each image line, we can compute and
mine the candidate interval [θli, θ

r
i ] based on the candidate region

ωi as shown in Fig. 5. In the following, we introduce how
we identify the horizontal inlier lines and how we leverage
the periodicity of the MW in the proposed MnS to search for
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Fig. 6. Clustered image lines on the Gaussian sphere with the VDD – the blue
axis (left) and corresponding candidate intervals [θl, θr] (right). By utilizing the
90◦ periodicity of the MW, we can reduce the search space of θ from the gray
to the magenta dotted lines. The proposed MnS can effectively find the optimal
probe (magenta), which maximizes the number of stabbed intervals.

the unknown-but-sought angle θ of the horizontal dominant
plane π.

2) Mining and Stabbing Candidate Intervals: Given the can-
didate interval [θli, θ

r
i ] of ωi, its range geometrically means the

horizontal dominant plane π(α, β, θ) intersects with the candi-
date region edge ei. The quadratic equations have two distinct
real solutions, which are the coordinates of two plane-edge
intersections. We compute the real root of the polynomial using
the SVD, and obtain the rotation range [θli, θ

r
i ], which correspond

to the case in which the horizontal dominant plane is tangential
to the candidate region edge as shown in Fig. 5. Our candidate
interval computation leads to O(K) complexity where K is the
number of lines. The proposed MnS utilizes the periodicity of
the MW by shifting the 90◦ phase of the candidate interval values
between −90◦ and 0◦ as shown in Fig. 6. This accelerates our
parameter search by reducing the search space of θ from [−π

2 ,
π
2 ]

to [0, π
2 ], resulting in “quasi-globally” optimal 3-DoF rotation

estimate in real-time.
We mine K candidate intervals from the K image lines, and

find the optimal probe, which stabs as many candidate intervals
as possible, i.e., maximizing the number of horizontal inlier lines
as shown in Fig. 6. We first sort all endpoints of the K candidate
intervals in ascending order with the merge sort algorithm whose
time complexity is O(K logK). We set the probe located at
each endpoint, and sequentially scan the number of stabbed
intervals in ascending order. We increase/decrease the number
of stabbed intervals by one when the probe passes through a
left/right endpoint, resulting in O(K) time complexity. Without
loss of generality, we determine the optimal probe θ∗ passing
through the median of the specific range with the maximum
number of stabbed intervals as the representative (see Fig. 6).
Given the optimal probe θ∗, we can compute the optimal hori-
zontal dominant direction h(α, β, θ∗) using Eq. (4), achieving
quasi-global optimality. The mining, endpoint sorting, and probe
scanning of the K candidate intervals lead to a total complexity
of O(K logK); thus, the proposed MnS for the MW can run in
polynomial time.

C. Horizontal Inlier Lines Based Nonlinear Optimization

The initial rotation estimate described in the previous section
focuses on maximizing the number of inliers rather than min-
imizing the consistency error [13] of the inliers, resulting in a
suboptimal 3-DoF MF rotation in terms of accuracy. To obtain
a more accurate camera orientation, we further refine the initial

rotation estimate by minimizing the average orthogonal distance
using the inlier lines.

We define a cost function, which is a function of only the
HDD θ because the VDD is relatively accurate and smooth [14].
We express the 3-DoF rotational motion as the axis-angle rep-
resentation where the direction of the axis of rotation is the
tracked vertical DD, and the magnitude of the rotation about
the axis is the horizontal DD θ. We can obtain an accurate,
drift-free camera orientation by solving the following nonlinear
optimization problem:

θ∗ = argmin
θ

2∑

k=1

Mk∑

i=1

(di,k (θ))
2 , (6)

where {Mk}2k=1 is the number of parallel lines related to the
k-th VD counted in the proposed MnS algorithm as inliers. In
addition, di,k(θ) denotes the distance of the i-th image line to
the k-th VD in the image plane. We employ the Levenberg–
Marquardt (LM) algorithm for solving Eq. (6). By additionally
optimizing the horizontal DD θ from the parallel and orthogonal
inlier lines found in the proposed MnS, we can estimate a more
accurate and consistent rotational motion compared to the initial
rotation estimate.

V. EVALUATION

We evaluate the proposed method on several datasets obtained
from various sensor configurations in both indoor and outdoor
structured environments:

1) York Urban Dataset [18] (YUD) is composed of 102
calibrated RGB images captured in indoor and outdoor
Manhattan environments. It is the de facto standard for
evaluating rotational motion and line clustering because it
provides a set of manually extracted lines and correspond-
ing true MW labels.

2) ICL-NUIM Dataset [17] is a synthetic RGB-D dataset cap-
tured in a living room and office with true 6-DoF camera
poses. This dataset is useful for quantitatively evaluating
the rotational motion because it contains a variety of image
conditions and camera motions such as low texture and
frequent on-the-spot rotations.

3) Tello Urban Dataset is an author-collected dataset con-
sisting of time-synchronized RGB images and gravity
direction vectors from a DJI Tello drone through the ROS
Tello driver, flying in an outdoor urban area.

4) iOS Logger Dataset is an author-collected dataset contain-
ing an RGB image sequence, gravity direction vector, and
camera poses of an Apple ARKit (VIO) from an iPhone
12 Pro Max with a custom iOS app.

We compare the proposed method against other state-of-
the-art approaches including data sampling-based methods
(OLRE [12] and SLRE [14]), parameter search-based methods
(BnB [15]), and a combination of both (QBnB [9]). OLRE (or
SLRE) retrieves the estimated MF rotation hypothesized by three
sampled image lines (or a sampled single line and plane) from
the RGB(D) images. BnB [15] searches for the optimal MF
rotation over the rotation space with the image lines, achieving
global optimality. QBnB [9] first computes the 2-DoF using two
sampled image lines and then searches for the third DoF by BnB.
All methods applied are implemented in MATLAB and tested on
a desktop computer equipped with an Intel Core i7 (3.00 GHz)
CPU and 16 GB of memory.
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Fig. 7. Accuracy evaluation of the line clustering with ground-truth labels on
102 images of YUD [18]: precision (left) and recall (right).

TABLE II
COMPUTATIONAL TIME ANALYSIS ON YORK URBAN DATASET

A. York Urban Dataset

We evaluate the performance of the MF orientation estimation
in terms of the precision and recall error metric, and the accuracy
of the VDs in terms of the root mean square of the consistency
error [13]. We compute the precision C/(C + W) and recall
C/(C + M), where C, W, and M denote the number of correctly
identified, wrongly identified, and missing inliers, respectively.
The consistency error represents the orthogonal distance on the
image plane in pixels from an endpoint of the image line l to a
virtual line l̂ defined by the midpoint of l and an estimated VP.

The first row of Fig. 8 shows a representative evaluation result
of the proposed method compared with other approaches in
terms of precision, recall, consistency error, and run time. While
the data sampling-based methods (OLRE and SLRE) show a
fast computation time and good consistency error, they fail to
guarantee precision and recall simultaneously. BnB can obtain
all inlier lines, but it takes more than three seconds per image,
which is unsuitable for real-time applications. Although QBnB
can compute the MF rotations within 0.1 seconds, the existing
parameter search-based approaches aim to maximize the number
of inliers, and not minimize the consistency error. The proposed
method can obtain the second-lowest consistency error similar to
SLRE, and achieve 100% precision and recall accuracy, similar
to that of BnB, simultaneously in real-time at 100 Hz.

We analyze the computational time of the key components of
the proposed method given the VDD and image lines in Table II.
First, it takes ∼1.7 ms to compute the candidate intervals [θli, θ

r
i ]

for the ten image lines. We sort all the endpoints of the ten
candidate intervals, and find the optimal probe, taking ∼0.3 ms.
Horizontal inlier line-based nonlinear optimization with the
Levenberg–Marquardt (LM) takes ∼4.0 ms, and the other minor
computations such as MF direction matching take ∼0.03 ms.
Overall, the total computation time of the proposed method is
approximately 6∼14 ms per image depending on the number of
lines.

We report the precision and recall accuracy of various methods
for all 102 images of the YUD in Fig. 7. OLRE and SLRE show
a reasonable precision, but there are many missing inlier lines,
resulting in a low recall accuracy. Most data sampling-based

TABLE III
EVALUATION RESULTS ON ICL-NUIM DATASET

methods including OLRE and SLRE rely on RANSAC with
randomness and uncertainty, which sometimes fail to estimate
the MF rotations correctly. By contrast, our proposed method
is less sensitive to noise than RANSAC, and achieves a high
precision and recall accuracy similar to the parameter search-
based BnB and QBnB approaches while working efficiently.
The proposed method is the fastest and most stable among the
top three algorithms with high accuracy.

B. ICL-NUIM Dataset

We measure the mean value of the absolute rotation error
(ARE) [30] in degrees, and report the quantitative evaluation
results of various methods in Table III. The smallest rotation
error for each dataset is indicated in bold. We exclude parameter
search-based methods such as BnB and QBnB because they
are unsuitable for this type of continuous 3-DoF rotational
motion estimation. We add the result of OPRE [30], which is
an orthogonal plane-based tracking.

Some of the methods such as OLRE and OPRE depending on
multiple lines or planes sometimes fail to track the MF rotations
(marked as × in Table III) because multiple lines or orthogonal
planes are not always visible throughout the entire image se-
quence. Particularly in ‘Living Room 0,’ at one point the camera
observes only a single line and plane with extremely low texture,
which leads to a failure of other approaches. Theoretically, the
proposed method only requires at least a single plane for a VDD
and a single line for an HDD to estimate the MF rotations. The
proposed method can keep tracking the absolute 3-DoF camera
orientation stably and accurately for all image sequences as
shown in Fig. 9. Empirically, the proposed method can reliably
track the 3-DoF rotational motion if there are approximately five
image lines satisfying the MW given the VDD.

The second row of Fig. 8 shows a representative result
with precision, recall, consistency error, and run time. Our
approach outperforms the parameter search-based methods, and
achieves almost a similar absolute rotation error compared to
data-sampling methods such as SLRE. The average ARE of
the proposed method is 0.26 degrees, whereas OLRE, SLRE,
and OPRE are 5.79, 0.36, and 0.55 degrees, respectively. The
proposed method can stably track the absolute MF rotations
even when the camera sees only a single planar surface with
little texture by exploiting the theoretical minimal sampling, a
single line and a single plane.

C. Tello Urban Dataset

We evaluate the proposed method on real-world data from a
DJI Tello drone flying in outdoor urban MW environments as
shown in the third row of Fig. 8. We utilize the gravity direction
from the IMU as a VDD, and search for the optimal third DoF
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Fig. 8. Representative evaluations on York Urban [18], ICL-NUIM [17], and our Tello Urban datasets. Each row represents a tested dataset, and each column
denotes an evaluated algorithm. In the first row, we utilize the manually extracted lines. We extract the line segments with LSD [29] in the last two rows. The
numbers below the images are the precision, recall, consistency error, and run time.

Fig. 9. Representative example images in various indoor and outdoor urban
environments. Each column denotes the ICL-NUIM [17], TUM-RGBD [31],
Tello urban, and iOS logger datasets. We cluster a set of image lines satisfying
the inferred MW shown in the lower-right corner. The proposed method can
stably track the MW orientations regardless of the amount of texture.

of HDD with the image lines extracted using LSD [29]. Existing
approaches relying on a depth camera cannot operate well on a
drone flying over an open area due to the limited sensing range.
The proposed method can stably track the absolute 3-DoF cam-
era orientations in such a challenging outdoor flight environment
as shown in Fig. 9, showing that it can operate as a drift-free
visual-inertial compass for yaw angle correction.

We report the average run times of various methods in Ta-
ble IV. The data sampling-based approaches (OLRE and SLRE)
are efficient at the cost of sacrificing accuracy. Our method is

TABLE IV
COMPUTATIONAL TIME COMPARISON ON TELLO DATASET

significantly faster than BnB and is similar to the RANSAC-
based approaches. The proposed method in MATLAB can run
at 100∼150 Hz, suggesting its potential when implemented in
C/C++ for low-cost drones and various robotic applications with
low computational power.

D. iOS Logger Dataset

We evaluate the rotational accuracy of the proposed method
with the Apple ARKit, one of the most accurate and reliable
commercial VIO solutions. We set the camera orientation at
the start and end points to be the same, and rotate the camera in
place 16 times without any translational motion to quantitatively
check the final rotation drift error (see Fig. 10). The rotation drift
error of the ARKit gradually accumulates as the on-the-spot
rotation continues, and finally a severe rotation drift of 45◦ is
experienced. The translation estimation of the ARKit is also
inaccurate on the right side of Fig. 10. The proposed method
demonstrates extremely accurate and drift-free rotational motion
estimation results of less than 1◦ even after 16 rotations while
in place.

Please refer to the video clips and supplementary materials
showing more details and additional 3-DoF complex roll, pitch,
and yaw rotation experiments.
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Fig. 10. Apple ARKit (gray), the proprietary visual-inertial odometry (VIO), shows a severe rotational drift error at the end (about 45◦) when rotating the camera
in place 16 times, resulting in a degradation of the overall 6-DoF VIO motion estimation (right). The proposed Manhattan world max-stabbing (MWMS) can
estimate the absolute 3-DoF camera orientation (magenta) with respect to the VDs by tracking the Manhattan patterns (left), ultimately demonstrating a 3-DoF
rotational motion estimation error of less than 1◦.

VI. CONCLUSION

We propose a quasi-globally optimal and efficient MF rotation
computation approach to estimate the absolute 3-DoF camera
orientation with respect to the Manhattan world. We first detect
and track the vertical dominant direction from an RGB-D camera
or an IMU to compute the 2-DoF of the MF rotation, and then
search for the optimal third DoF with the proposed Manhattan
MnS, which effectively utilizes the periodicity of the Manhattan
structure. Our sampling of the vertical dominant direction speeds
up our parameter search in the horizontal direction by reducing
the search space in 1-DoF. Our method is insensitive to noise and
can achieve quasi-global optimality in real-time. Experiments
show that the proposed method outperforms the state-of-the-art
approaches in terms of accuracy, efficiency, and stability.
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