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Abstract
The covariance matrix, which should be estimated from the data, plays an impor-
tant role in many multivariate procedures, and its positive definiteness (PDness) 
is essential for the validity of the procedures. Recently, many regularized estima-
tors have been proposed and shown to be consistent in estimating the true matrix 
and its support under various structural assumptions on the true covariance matrix. 
However, they are often not PD. In this paper, we propose a simple modification to 
make a regularized covariance matrix be PD while preserving its support and the 
convergence rate. We focus on the matrix �

∞
 norm error in covariance matrix esti-

mation because it could allow us to bound the error in the downstream multivari-
ate procedure relying on it. Our proposal in this paper is an extension of the fixed 
support positive-definite (FSPD) modification by Choi et  al. (2019) from spectral 
and Frobenius norms to the matrix �

∞
 norm. Like the original FSPD, we consider a 

convex combination between the initial estimator (the regularized covariance matrix 
without PDness) and a given form of the diagonal matrix minimize the �

∞
 distance 

between the initial estimator and the convex combination, and find a closed-form 
expression for the modification. We apply the procedure to the minimum variance 
portfolio (MVP) optimization problem and show that the vector �

∞
 error in the esti-

mation of the optimal portfolio weight is bounded by the matrix �
∞

 error of the 
plug-in covariance matrix estimator. We illustrate the MVP results with S&P 500 
daily returns data from January 1978 to December 2014.
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1 Introduction

The covariance matrix plays an important role in many multivariate procedures, 
and its positive definiteness (PDness) is essential for the validity of those meth-
ods. Recently, as high-dimensional data have become more commonplace, many 
regularized covariance matrix estimators have been proposed under various struc-
tural assumptions on the true matrix (Bickel and Levina 2008b, a; Cai et al. 2010; 
Cai and Liu 2011; Cai and Zhou 2012b; Won et  al. 2013; Khare et  al. 2015). 
The regularized estimators are well understood in their asymptotic theory and, 
in particular, are known to be consistent in estimating the true covariance matrix 
and its support. However, these estimators are often not PD in finite samples; 
for example, the banding and thresholding methods in the literature element-
wisely regularize the sample covariance matrix, ignoring its positive-semidefinite 
eigenstructure.

Some efforts have been made to resolve the difficulty of non-PDness. Rothman 
(2012), Xue et al. (2012), and Liu et al. (2014) find an estimator that attains both 
sparsity and PDness by incorporating these requirements into a single optimization 
problem. The authors rewrite the soft-thresholding of the sample covariance matrix 
as a solution to an �1 regularized convex minimization problem and add an addi-
tional penalty (or constraint) to ensure the PDness of the solution, which is compu-
tationally demanding. Instead, Choi et al. (2019b) propose a two-stage approach to 
update the non-PD regularized estimators to recover their PDness while retaining 
the same supports and asymptotic properties. Specifically, for a given covariance 
matrix estimator �̂ , they consider a distance minimization program

where ‖ ⋅ ‖ is a matrix norm, 𝜖 > 0 is a predetermined small constant and �1(�̂
∗

) 
denotes the smallest eigenvalue of �̂

∗

 . They solve (1) for two matrix norms: the 
spectral norm and Frobenius norm. However, the solvability of (1) for the matrix �

∞
 

norm is still unknown in the literature. It is particularly important to retaining the 
matrix �

∞
 norm (equivalently, the matrix �1 norm for symmetric matrices) conver-

gence rate of the initial estimator, because it could allow us to bound the error in the 
downstream multivariate procedure relying on it (as shown in this paper).

In this paper, we solve the PD modification problem (1) for the matrix �
∞

 norm, 
where we find a closed-form expression. Like the original FSPD, the modified PD 
estimator, denoted by ‘ �

∞
-FSPD’, exhibits several advantages. First, the computa-

tion of the �
∞

-FSPD is optimization-free since the choices of � and � are explicitly 
expressible. Second, suitable choices of � and � in (1) make the �

∞
-FSPD estima-

tor and the initial estimator have the same rate of convergence to the true covari-
ance matrix under some mild conditions. Finally, the �

∞
-FSPD procedure is generic 

in the sense that it is applicable to any (possibly) non-PD estimator of covariance 
matrix, as well as precision matrix (the inverse of the covariance matrix).

(1)
minimize

��
∗

�
‖��

∗

−
��‖ ∶ 𝛾1(

��
∗

) ≥ 𝜖, supp(��
∗

) = supp(
��), ��

∗

= (
��
∗

)
⊤
�
,

subject to ��
∗

∈

�
�𝜇,𝛼(

��) ≡ 𝛼�� + (1 − 𝛼)𝜇 � ∶ 𝛼 ∈ [0, 1], 𝜇 ∈ ℝ

�
,
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The use of the matrix �
∞

 norm in the estimation of the covariance matrix often pro-
vides a better understanding of the performance of the downstream multivariate proce-
dures using it. In this paper, we apply the proposed procedure to the minimum variance 
portfolio (MVP) optimization problem. We show that, under some conditions on the 
true covariance matrix, the vector �

∞
 error in the estimation of the optimal portfolio 

weight is bounded by the matrix �
∞

 error of the plug-in covariance matrix estimator. 
We consider the universal thresholding estimator by Bickel and Levina (2008a) or Cai 
and Liu (2011) as an initial estimator of �

∞
-FSPD and have an estimator of the opti-

mal portfolio weight whose vector �
∞

 error is well understood. We illustrate the MVP 
results with S&P 500 daily returns data from January 1978 to December 2014.

The paper is organized as follows. In Sect. 2, we solve the distance minimization 
problem (1) for the matrix �

∞
 norm and find an analytical solution to it. In Sect. 3, we 

show that the proposed �
∞

-FSPD estimator preserves the �
∞

 norm convergence rate of 
the original estimator. In Sect. 4, we apply the �

∞
-FSPD estimator to the MVP optimi-

zation problem. We show that the rate of the plug-in estimator of the optimal portfolio 
is bounded by the �

∞
 norm error of the covariance matrix estimator. In Sect.  5, we 

apply the MVP results to S&P 500 data and compare the MVP with the �
∞

 norm-
based solution to existing approaches. Finally, in Sect. 6, we conclude the paper with 
discussion.

2  FSPD with matrix �
∞

 norm ( �
∞

‑FSPD)

2.1  Distance minimization

For a predetermined small positive number 𝜖 > 0 , if the smallest eigenvalue �̂1 of the 
estimate �̂ of the covariance matrix � is not less than � , we do not need to modify �̂ . 
Hence, we only consider the case in which �̂1 is less than � . Our purpose is to modify �̂ 
so that its smallest eigenvalue is larger than or equal to � while minimizing the distance 
between the modified estimate and the original one. Here, we consider a class of linear 
shrinkage as a modification of �̂:

Now, we must solve the following minimization problem.

where for a symmetric � = (aij) ∈ ℝ
p×p , ‖�‖

∞
= max1≤i≤p

∑p

j=1
�aij� . The assump-

tion �𝛾1 < 𝜖 and the constraint ��̂1 + (1 − �)� ≥ � imply that � should be larger than 
�.

{
��,�(�̂) ≡ ��̂ + (1 − �)�� ∶ � ∈ ℝ, � ∈ [0, 1]

}
.

(2)
minimize

�∈ℝ,�∈[0,1]
‖��,�(�̂) − �̂‖

∞

subject to ��̂1 + (1 − �)� ≥ �
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2.2  The choice of ̨

As in Choi et al. (2019b), we observe that

Thus, we have the following lemma.

Lemma 1 Assume that �̂ is given and �𝛾1 < 𝜖 . Then, for any fixed � ∈ (�,∞),

minimizes the problem (2).

2.3  The choice of �

By substituting (3) into (2), we obtain a reduced minimization problem, which 
depends only on �,

Let S(�) be the objective function of the minimization problem (4). Then, we 
observe

where �ij = 1 if i = j , and is 0 otherwise. To simplify the objective function (5), we 
introduce the following lemma.

Lemma 2 For ai, bi ∈ ℝ ( i = 1,… , n ), define a function f ∶ ℝ → ℝ by

Let M1 = max1≤i≤n(ai + bi) and M2 = max1≤i≤n(−ai + bi) . Then, f can be rewritten 
as

where A = (M1 −M2)∕2 and B = (M1 +M2)∕2.

‖��,�(�̂) − �̂‖
∞
= (1 − �)‖�� − �̂‖

∞
.

(3)�∗

(�) =
� − �

� − �̂1

(4)minimize

𝜇∶𝜇>𝜖
‖�𝜇,𝛼∗(𝜇)(

��) − ��‖
∞
.

(5)

S(�) = ‖��,�∗(�)(�̂) − �̂‖
∞

=

� − �̂1

� − �̂1
‖�� − �̂‖

∞
=

� − �̂1

� − �̂1
max
1≤j≤p

p�

i=1

�����ij − �̂ij
���

=

� − �̂1

� − �̂1
max
1≤j≤p

�
���� − �̂jj

��� +
�

i∶i≠j

����̂ij
���

�
,

f (x) = max
1≤i≤n

{||x − ai
|| + bi

}
.

f (x) = |x − A| + B
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Proof We use mathematical induction. When n = 1 , it is trivial. We show that the 
conclusion holds when n = 2 . Let f (x) = max

{||x − a1
|| + b1,

||x − a2
|| + b2

}
 , and let 

m1 = max{a1 + b1, a2 + b2} and m2 = max{−a1 + b1,−a2 + b2} . We note that there 
are only four cases in which a combination of indices achieves the maximum val-
ues. If m1 = a1 + b1 and m2 = −a1 + b1 , then ||x − a1

|| + b1 is larger than ||x − a2
|| + b2 

for any x. Hence, f (x) = ||x − a1
|| + b1 = |x − a| + b , where a = (m1 − m2)∕2 

and b = (m1 + m2)∕2 . Similarly, if m1 = a2 + b2 and m2 = −a2 + b2 , then the 
result holds. We need to show that the result holds when m1 = a1 + b1 and 
m2 = −a2 + b2 . (The other case in which m1 = a2 + b2 and m2 = −a1 + b1 is sym-
metrically identical.) In this case, we can easily verify that for x ≤ a = (m1 − m2)∕2 , 
f (x) = −x + a + b and for x > a , f (x) = x − a + b , which implies f (x) = |x − a| + b . 
Therefore, the conclusion holds when n = 2 . We assume that the conclusion holds 
when n = m . Now, we consider the case n = m + 1 . By the assumption, we observe

where m1 = max1≤i≤m(ai + bi) , m2 = max1≤i≤m(−ai + bi) , a = (m1 − m2)∕2 , and 
b = (m1 + m2)∕2 . Using the conclusion for n = 2 , we can see that the conclusion 
also holds when n = m + 1 . Inductively, the conclusion holds for all integers n.   ◻

By Lemma 2, we can write the objective function S(�) as

where A = (M1 −M2)∕2 and B = (M1 +M2)∕2 with

Note that

where ej is a p-dimensional vector with its jth entry 1 and the remaining entries of 
zero. If �̂1 = A , then �̂ is positive definite, which is not the case we are interested in. 
Hence, we exclude this case. In other words, we assume that A is strictly larger than 
�̂1 . The following lemma shows the solution to the minimization problem (4).

f (x) = max
1≤i≤m+1

{||x − ai
|| + bi

}
= max{|x − a| + b, |x − am+1| + bm+1}

(6)S(�) = (� − �̂1)
|� − A| + B

� − �̂1

M1 =max
j

�
�̂jj +

�

i∶i≠j

����̂ij
���

�
= ‖�̂‖

∞
,

M2 =max
j

�
−�̂jj +

�

i∶i≠j

����̂ij
���

�
.

A =

M1 −M2

2
=

maxj

�
�̂jj +

∑
i∶i≠j

����̂ij
���
�
−maxj

�
−�̂jj +

∑
i∶i≠j

����̂ij
���
�

2

≥min
j

�̂jj = min
j

e
⊺

j
�̂ej

≥ min
v∶‖v‖2=1

v⊺�̂v = �̂1
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Lemma 3 For A and B defined above, assume that �̂ is given, and �𝛾1 < min{𝜖,A} . 
Then, for any � ∈ (�,∞)

In detail, if �𝛾1 +M2 > 0 , then ‖��,�∗(�)(�̂) − �̂‖
∞

 is a decreasing func-
tion of � and converges to (� − �̂1) as � → ∞ . In particular, if � ≥

(1+�)�̂1+M2

�
 for 

some 𝛿 > 0 , then ‖��,�∗(�)(�̂) − �̂‖
∞
≤ (1 + �)(� − �̂1) . If �̂1 +M2 = 0 , then 

‖��,�∗(�)(�̂) − �̂‖
∞
= � − �̂1 for any � ≥ A . If �𝛾1 +M2 < 0 , then ‖��,�∗(�)(�̂) − �̂‖

∞
 

achieves its minimum at � = A.

Proof Below, we solve the minimization problem (4) for the three cases, (a) 
�𝛾1 +M2 > 0 , (b) �̂1 +M2 = 0 , and (c) �𝛾1 +M2 < 0 , respectively. The graph of S(�) 
for each case is presented in Fig.  1. First, if (a) �𝛾1 +M2 > 0 , then S(𝜇) > 𝜖 − �𝛾1 
for any � ∈ (�,∞) . Since S(�) decreases as � increases, there is no solution to 
the minimization problem. However, instead of finding the best solution, we 
can make S(�) = ‖��,�∗ (�̂) − �̂‖

∞
 close to (� − �̂1) by setting � to a large value. 

Specifically, we can easily determine that if � ≥
(1+�)�̂1+M2

�
 for some 𝛿 > 0 , then 

‖��,�∗(�)(�̂) − �̂‖
∞
≤ (1 + �)(� − �̂1) . Here, a large choice of � makes �∗ close to 1 

and slightly attenuates �̂ and its eigenvalues.
In addition, note that �𝛾1 +M2 > 0 is equivalent to

‖��,�∗(�)(�̂) − �̂‖
∞
≥ (� − �̂1)min

�
1,

B

A − �̂1

�
.

Fig. 1  Graphs of S(�) for each case: a �𝛾1 +M2 > 0 (red dotted line), b �̂1 +M2 = 0 (green solid line), 
and c �𝛾1 +M2 < 0 (blue dashed line) (color figure online)
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Thus, the condition (7) holds easily when �̂1 is large and the initial estimate �̂ is well 
posed. In this case, we do not have to shrink �̂ much. Second, if (b) �̂1 +M2 = 0 , 
S(�) has a minimum of � − �̂1 at any � larger than A. Taking � as any value larger 
than A gives us the desired result. Third, if (c) �𝛾1 +M2 < 0 , then S(�) has a mini-
mum of B

A−�̂1
 at � = A . Again, note that case (c) is equivalent to

The condition (8) holds easily for a small value of �̂1 . In other words, if the initial 
estimate �̂ is non-PD or close to non-PD, there is a unique optimal solution � , which 
makes the smallest eigenvalue of ��,�∗ (�̂) larger than � , and ��,�∗ (�̂) is close to �̂ 
with respect to ‖⋅‖

∞
 .   ◻

3  Statistical properties of the �
∞
−FSPD estimator

To establish the convergence rate of the �
∞
−FSPD estimator, we make the assump-

tion, which Choi et al. (2019b) used for the spectral norm, and show that the con-
vergence rate of the �

∞
−FSPD estimator is at least equivalent to that of the initial 

estimator in terms of the �
∞

 norm. The assumption we make is 

(A1)  � is less than the smallest eigenvalue �1 of �.

Theorem  1 Let �̂ be any estimator of � . Suppose that � satisfies the assumption 
(��) . Supposing that we take � as in Lemma 3, then we have

for some constant C > 0.

Proof For � satisfying (��) , we observe

The second inequality follows from the Weyl’s perturbation inequality, and the third 
inequality follows from Hölder’s inequality, which states that for a symmetric matrix 
�,

Combining the results of Lemma 3 and the inequality (9) completes the proof.   ◻

(7)
∑

i∶i≠j

|||�𝜎ij
||| > �𝜎jj − �𝛾1 for some j.

(8)
∑

i∶i≠j

|||�𝜎ij
||| < �𝜎jj − �𝛾1 for all j.

‖��,�∗ (�̂) − �‖
∞
≤ (1 + C)‖�̂ − �‖

∞
,

(9)(� − �̂1)+ ≤ (�1 − �̂1)+ ≤ ‖�̂ − �‖2 ≤ ‖�̂ − �‖
∞
.

‖�‖2 ≤
√
‖�‖1‖�‖∞ = ‖�‖

∞
.
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We next discuss some regularized covariance matrix estimators and their conver-
gence rates in the �

∞
 norm. To our knowledge, the only estimator whose �

∞
 norm 

rate is predominantly studied is the universal thresholding estimator 
�̂
BL

= T�(�) =
(
�̂ij
)
1≤i,j≤p

 by Bickel and Levina (2008a), where � = c

√
log p

n
 and

However, many other popular sparse covariance matrix estimators, which include 
the banding estimator by Bickel and Levina (2008b), the tapering estimator by Cai 
et  al. (2010), and the adaptive thresholding estimator by Cai and Liu (2011), are 
also known to achieve the minimax optimal rate of the convergence in the matrix 
�
∞

 norm. In Bickel and Levina (2008b) and Cai and Liu (2011), the authors focus 
on the spectral norm error but compute the matrix �

∞
 norm error as its upper bound 

(see their proofs). Thus, their convergence rates in the matrix �
∞

 norm are the same 
as those in the spectral norm (reported in the papers) and are minimax optimal over 
different classes of covariance matrices.

The minimax rate of �̂
BL in the �

∞
 norm is computed by Cai and Zhou (2012a) 

and Cai and Zhou (2012b). Two papers derive the minimax rate of convergence for 
estimating a class of large covariance matrices under the matrix operator norm. Cai 
and Zhou (2012b) consider the following class of sparse matrices:

for 0 ≤ q < 1 , where �
−j,j denotes the jth column of � with �jj removed,

and |�|
(k) denotes the kth largest element in magnitude of the vector � . They show 

that:

Theorem A (Cai and Zhou 2012b, Theorem 5) Assume that cn,p ≤ Mn
1−q

2 (log p)
−

3−q

2  
for 0 ≤ q < 1 and 1 < n𝛽 ≤ p for some constants 𝛽 > 1 . Then, the minimax risk of 
estimating the covariance matrix � under the matrix �w-norm for 1 ≤ w ≤ ∞ over 
the class Pq(�, cn,p) satisfies

where an ≍ bn implies that there exist positive constants c and C such that 
c ≤ an∕bn ≤ C , Pq(�, cn,p) denotes the class of distributions of p-dimensional ran-
dom vector X satisfying Cov(X) = � ∈ Gq(cn,p) and

Moreover, the universal thresholding estimator �̂
BL by Bickel and Levina (2008a) is 

rate-optimal.

�𝜎ij = sijI
(|||sij

||| > 𝜆
)
for all i ≠ j.

(10)Gq(cn,p) =
{
� = (�ij)1≤i,j≤p ∶ �

−j,j ∈ Bp−1
q

(cn,p) for 1 ≤ j ≤ p
}

(11)Bp−1
q

(c) =
{
� ∈ ℝ

p−1
∶ |�|q

(k)
≤

c

k
for all k = 1, 2,… , p − 1

}
,

(12)inf
�̂

sup
Pq(�,cn,p)

�
‖‖‖�̂ − �

‖‖‖
2

w
≍ c2

n,p

(
log p

n

)1−q

+

log p

n

(13)Pr(�v⊺(X − �X)� > t) ≤ e
−

t2

2𝜏 for allt > 0 and ‖v‖2 = 1.
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4  Application to MVP

Let �̃ = ��∗,�∗ (�̂) be the �
∞

-FSPD modification of an estimator �̂ and assume 
that

for some sequence �n → 0 . Clearly, we also have Pr
�
‖�̂ − �‖2 ≤ �n

�
→ 1 . From 

Theorem 1 in Sect. 3 and Theorem 2 of Choi et al. (2019b), the FSPD modification 
�̃ of �̂ preserves the convergence rate in �

∞
 of the initial estimator �̂ . Suppose that 

their rates in the matrix �
∞

 norm are the same as �n , i.e. as n → ∞ , we have

For the MVP application, we make an additional assumption regarding the initial 
estimator and the precision matrix �−1 , which is 

(A2)  �p�n‖�−1‖2
∞
→ 0, as n → ∞,

 where �p denotes the maximum eigenvalue of �.

4.1  Universal thresholding estimator as an initial estimator

The proposition below shows that the universal thresholding estimator �̂
BL by Bickel 

and Levina (2008a) satisfies the assumption (A2) under the weak assumption on the 
true covariance matrix.

Proposition 1 Suppose that � satisfies � = (�ij) ∈ Gq(c1,n,p) , �
−1

= (�ij) ∈ Gq(c2,n,p) , 
�2
max

(≡ maxi �ii) = O(1) and �2
max

(≡ maxi �ii) = O(1) . Then, for �̂
BL , the assump-

tion (A2) holds if

Proof First, we observe that the matrix �
∞

 norm of precision matrix �−1
= (�ij)1≤i,j≤p 

is bounded as

Similarly, we can also obtain ‖�‖
∞
= O(1) . This implies that �p = ‖�‖2 = O(

√
1) . 

According to the result of Cai and Zhou (2012b), the rate of convergence of the 

Pr

�
‖�̂ − �‖

∞
≤ �n

�
→ 1

Pr

�
‖�̂ − �‖

∞
≤ �n

�
→ 1 and Pr

�
‖�̃ − �‖

∞
≤ 2�n

�
→ 1.

(14)�n = max

(
c1,n,p

( log p
n

) 1−q

2

,
( log p

n

)1∕2
)

→ 0.

‖�−1‖
∞
= max

i

�

j

��ij�

≤max
i

�
�ii +

p−1�

j=1

�
c2,n,p

j

�1∕q
�

= O(1).



610 S. Cho et al.

1 3

universal thresholding estimator �̂
BL is �n = c1,n,p

(
log p

n

) 1−q

2

+

(
log p

n

) 1

2 . Hence, we 
obtain the following convergence of the rate:

which completes the proof.   ◻

Now, let us discuss the class of true covariance matrix � in which � ∈ Gq(c1,n,p) and 
�
−1

∈ Gq(c2,n,p) . We claim that the class is not small, with the following example. Sup-
pose that we consider the following model for X = (X1,⋯ ,Xp)

⊤:

where 𝜖 = (𝜖1,… , 𝜖p)
⊤ has variance Var(�) = diag(di) = D . Then, we have 

� = Var(X) = (I − A)−1D(I − A⊤
)
−1 , where A = (aij) with aij = 0 for i ≤ j . Now, 

we assume |aij| ≤ c1�
i−j

1
 for some c1 > 0 and 0 < 𝜌1 < 1 with (1 + c1)𝜌1 < 1 . 

Since A is a lower triangular matrix with zero diagonal entries, the power matrix 
Ar vanishes as r increases ( Ar

= O for r ≥ p ). Hence, (I − A)−1 = I + A + R where 
R = A2

+⋯ + Ap−1 , and

We observe that for i, j with i − j > 1

Hence, for i > j , |(RD)ij| ≤ c2dmax�
i−j

2
 . For i ≥ j − 1,

�p�n‖�−1‖2
∞
= O

�
�n
�
= o(1),

X1 = �1

X2 = a21X2 + �2

X3 = a31X1 + a32X2 + �3

⋮

Xp = ap1X1 + ap2X2 +⋯ + ap(p−1)Xp−1 + �p

� = (I + A)D(I + A)⊤ + RD + DR
⊤
+ RDA

⊤
+ ADR

⊤
+ RDR

⊤.

|Rij| =
||||||

i−j−1∑

d=1

∑

j<kd<⋯<k1<i

aik1ak1k2 ⋯ akdj

||||||

≤

i−j−1∑

d=1

∑

j<kd<⋯<k1<i

cd+1
1

𝜌
i−j

1
=

i−j−1∑

d=1

(
i − j − 1

d

)
cd+1
1

𝜌
i−j

1

≤
c1

1 + c1

{
(1 + c1)𝜌1

}i−j
= c2𝜌

i−j

2
.
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and for i < j − 1,

Similarly, we can show that |(RDR⊤
)ij| ≤

c2dmax𝜌
4
2

1−𝜌2
2

𝜌
|i−j|
2

 . Additionally, we observe for 
i > j

To summarize, the entries of � vanish exponentially farther away from the diagonal, 
which implies that � ∈ Gq(c1,n,p) for some c1,n,p > 0 . In the same way, we can show 
that Ω = �

−1
= (I − A)⊤D−1

(I − A) ∈ Gq(c2,n,p) for some c2,n,p > 0.

4.2  MVP allocation

In finance, a portfolio refers to a family of (risky) assets held by an institution 
or private individual. If there are multiple assets to invest in, a combination of 
assets is considered and it becomes an important issue to select an optimal port-
folio allocation. The MVP allocation is one of the most well-established strate-
gies for portfolio allocation. Chan et al. (2015) propose to choose a portfolio that 
minimizes risk, or standard deviation of return. To be specific, let � = (r1,… , rp)

⊤ 
be a p-variate random vector in which, for each j ∈ {1,… , p} , rj represents 
the return of the jth asset constituting the portfolio. Denote by � = Var(�) the 
unknown covariance matrix of assets. A p × 1 vector � represents an allocation 

|(ADR⊤
)ij| =

|||||

p∑

k=1

aikdkRjk

|||||

≤c1c2dmax

j−2∑

k=1

𝜌i−k
1

𝜌
j−k

2
= c1c2dmax𝜌

i−j

1

j−1∑

k=2

𝜌k
1
𝜌k
2

≤
c1c2dmax𝜌1𝜌

2
2

1 − 𝜌1𝜌2
𝜌
i−(j−1)

1
,

|(ADR⊤
)ij| ≤c1c2dmax

i−1∑

k=1

𝜌i−k
1

𝜌
j−k

2
= c1c2dmax𝜌

j−i

2

i−1∑

k=1

𝜌k
1
𝜌k
2

≤
c1c2dmax𝜌1𝜌

2
2

1 − 𝜌1𝜌2
𝜌
(j−1)−i

2
.

|||
(
(I + A)D(I + A)⊤

)
ij

||| =
|||||

p∑

k=1

dk(𝛿ik + aik)(𝛿jk + ajk)
|||||
=

||||||

j−1∑

k=1

dkaikajk + djaij

||||||

≤c2
1
dmax

j−1∑

k=1

𝜌
i+j−2k

1
+ c1dmax𝜌

i−j

1

≤

(
c2
1
dmax𝜌

2
1

1 − 𝜌2
1

+ c1dmax

)
𝜌
i−j

1
.
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of the investor’s wealth in such a way that each wj indicates the weight of the jth 
asset and w1 +⋯ + wp = 1 . Then, the MVP optimization by Chan et al. (2015) is 
formulated as

In applying MVP to the practice, the covariance matrix � is unknown and should 
be replaced by a suitable PD estimator. A sample covariance matrix is typically 
used, but it often fails at various points when the number of assets in the universe 
increases (p is large). To resolve this difficulty, researchers propose to use regular-
ized estimators of high-dimensional covariance in order to make some additional 
constraints for the optimization problem (Ledoit and Wolf 2003, 2004; DeMiguel 
et al. 2009; Fan et al. 2013; Glasserman and Kang 2014; Ledoit and Wolf 2017a, b; 
Dai and Wen 2018; Dai et al. 2020). In particular, recently, many regularized high-
dimensional covariance estimators have been proposed by many authors, and their 
theoretical properties are understood well. However, as pointed out by Choi et  al. 
(2019b), they frequently become non-PD. Here, we propose to modify the initial 
regularized estimator, say �̂ , with �

∞
-FSPD. Let the resulting estimator be �̃ . Thus, 

we solve

and let the solution be �̃.
We claim that the �

∞
 error of �̃ can be bounded through ‖�̃ − �‖

∞
 in 

Theorem 2.

Theorem 2 For �̃ , the solution to (15), under the assumption (A2),

which converges to 0 with probability approaching 1.

Proof Note that �� =
��
−1
�∕�⊤��

−1
� and � = �

−1
�∕�⊤�

−1
� . We have

To evaluate the first term in (17), say E , note that

minimize

�
�

⊤
�� subject to �

⊤
� = 1.

(15)minimize

�
�

⊤��� subject to �
⊤
� = 1.

(16)‖‖�̃ − �‖‖∞ ≤

C�p�n
‖‖‖�

−1‖‖‖
2

∞

(
1 + 2�p

‖‖‖�
−1‖‖‖∞

)

p
,

(17)

‖‖�� − �‖‖∞ =

‖‖‖‖‖‖‖

(
��
−1

− �
−1
)
�

�⊤�
−1
�

+

�⊤
(
��
−1

− �
−1
)
�

(
�⊤��

−1
�

)(
�⊤�

−1
�
)�

−1
�

‖‖‖‖‖‖‖
∞

≤

‖‖‖‖
��
−1

− �
−1
‖‖‖‖∞

�⊤�
−1
�

+

||||
�⊤

(
��
−1

− �
−1
)
�
||||(

�⊤��
−1
�

)(
�⊤�

−1
�
)
‖‖‖�

−1‖‖‖∞.
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which is equivalent to

for C > 2 , where the assumption (A2) is used for the second inequality. The assump-
tion (A2) implies that �n‖�−1‖

∞
→ 0 as n → ∞ . Thus,

with probability approaching 1.
Next, we evaluate the second term in (17), say F . Since

Using assumption (A2), it follows that

with probability approaching 1. Finally, we obtain the following inequality.

����
�̃
−1

− �
−1
����∞

≤ ‖�−1‖
∞

����̃ − �
���∞

����
�̃
−1����∞

≤ 2�n
����

−1���∞

�
����

−1���∞ +

����
�̃
−1

− �
−1
����∞

�
,

‖‖‖‖
�̃
−1

− �
−1
‖‖‖‖∞

≤

2�n
‖‖‖�

−1‖‖‖
2

∞

1 − 2�n
‖‖‖�

−1‖‖‖∞
≤ C�n

‖‖‖�
−1‖‖‖

2

∞

,

E ≤
1

p
C�p�n

‖‖‖�
−1‖‖‖

2

∞

�
⊤��

−1
� ≥�⊤�

−1
� − �

⊤
(
�
−1

−
��
−1
)
� ≥ p𝛾−1

p
− p

‖‖‖‖
�
−1

−
��
−1‖‖‖‖∞

,

F =

||||
�⊤

(
��
−1

− �
−1
)
�
||||(

�⊤��
−1
�

)(
�⊤�

−1
�
)
‖‖‖�

−1‖‖‖∞

≤

||||
�⊤

(
��
−1

− �
−1
)
�
||||
‖‖‖�

−1‖‖‖∞

p2𝛾−2
p

(
1 − 𝛾p

‖‖‖‖
��
−1

− �
−1
‖‖‖‖∞

)

≤

‖‖‖‖
��
−1

− �
−1
‖‖‖‖∞

‖‖‖�
−1‖‖‖∞

p𝛾−2
p

(
1 − 𝛾p

‖‖‖‖
��
−1

− �
−1
‖‖‖‖∞
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F ≤

2C�2
p
�n
‖‖‖�

−1‖‖‖
3

∞

p

‖‖�̃ − �‖‖∞ ≤

C�p�n
‖‖‖�

−1‖‖‖
2

∞

(
1 + 2�p

‖‖‖�
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with probability approaching 1.   ◻

5  Numerical study

We numerically compare the performance of the �
∞

-FSPD estimator to other FSPD 
estimators in regard to the estimation error of the covariance matrix and the risk (vari-
ance) of the optimal portfolio. We denote our method by ‘FSPD ( �

∞
)’, and other FSPD 

estimators by ‘FSPD ( �
S
)’, ‘FSPD ( �

F
)’, and ‘FSPD ( ∞ )’ as in Choi et  al. (2019b). 

We recall that ‘FSPD ( �
S
 )’ and ‘FSPD ( �

F
 )’ minimize the spectral norm distance and 

Frobenius norm distance between the initial estimator and the class of linear shrinkage 
estimators, respectively, and ‘FSPD ( ∞ )’ sets � = ∞ . In the comparison, we use the 
adaptive soft thresholding estimator created by Cai and Liu (2011) as the initial covari-
ance matrix estimator.

For the study, we follow the simulation settings of Choi et al. (2019b). We generate 
p-dimensional random vectors �1,… , �n from the multivariate normal distribution with 
mean vector � and covariance matrix � . We consider two types of covariance matrix as 
true � : 

1. “Linearly tapered Toeplitz” matrix �1 with [�1]ij =

(
1 −

|i−j|
L

)

+

 , where 
L ∈ {10, 20};

2. “ O v e r l a p p e d  b l o c k - d i a g o n a l ”  m a t r i x  �2  w i t h 
[�2]ij = I(i = j) + �I

(
(i, j) ∈ (Ik ∪ {ik + 1}) × (Ik ∪ {ik + 1}) for some k

)
 , where 

Ik = {20(k − 1) + 1,… , 20k} , ik = 20k , and � ∈ {0.6, 0.9}.

We set n ∈ {100, 200, 400} , p ∈ {100, 200, 400} and � = 10−4 . We generate 200 data-
sets for each of the 36 possible combinations of parameters. We note that for some 
combinations of parameters, the minimum eigenvalue of the initial covariance matrix 
estimate is larger than the prespecified level � , which makes FSPD modification unnec-
essary. Hence, for each repetition, we generate a dataset until the minimum eigenvalue 
of its initial covariance matrix estimate becomes non-PD. For every simulated dataset, 
we compute an adaptive soft thresholding estimate, where we use 5-fold cross-valida-
tion to select the regularization parameter of the estimator. We then apply four FSPD 
methods to the initial estimate.

We first compare the relative error of the FSPD estimator with the initial estimator, 
which is defined as

We consider three matrix norms to calculate relative errors: the spectral norm, the 
Frobenius norm, and the matrix �

∞
 norm. The box plots of relative errors are shown 

in Figs.  2 and 3. The figures show that the relative error of FSPD ( �
∞

 ) is larger 
than others in most cases, except the cases with the matrix �

∞
 error. Additionally, 

relative error =

‖Φ�,�∗(�)(�̂) − �‖

‖�̂ − �‖
.
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Fig. 2  Box plots of relative errors of modified estimates against initial estimates when � = �1 . ‘FSPD 
( �

S
)’, ‘FSPD ( �

F
)’, and ‘FSPD ( �

∞
 )’ choose optimal � , which minimizes spectral norm error, Frobenius 

norm error, and �
∞

 norm error, respectively, and ‘FSPD ( ∞ )’ sets � = ∞ . Corresponding n and p values 
are represented in the upper left corner of each figure
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Fig. 3  Box plots of relative errors of modified estimates against initial estimates when � = �2 . ‘FSPD 
( �

S
)’, ‘FSPD ( �

F
)’, and ‘FSPD ( �

∞
 )’ choose optimal � , which minimizes spectral norm error, Frobenius 

norm error, and �
∞

 norm error, respectively, and ‘FSPD ( ∞ )’ sets � = ∞ . Corresponding n and p values 
are represented in the upper left corner of each figure
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interestingly, we find that FSPD ( ∞ ) performs best in all cases. The reason is that 
fixing � = ∞ reduces the variability of the FSPD estimates, while the choice of � in 
other FSPD estimates depends on the samples.

We next compare the performance of the FSPD methods in terms of the MVP 
allocation. The risk of the optimal portfolio with a covariance matrix estimate �̂ 
is defined as the minimum variance �̂��̂ , where � is true covariance matrix and 
�� =

��
−1
�∕�⊤��

−1
� is the optimal allocation vector. Here, the initial adaptive thresh-

olding covariance matrix is frequently not PD, and its risk is not available. For this 
reason, we compute the relative risks of FSPD ( �

S
 ), FSPD ( �

F
 ), and FSPD ( ∞ ) versus 

the FSPD ( �
∞

 ) method. The box plots of relative risks are shown in Figs. 4 and 5. The 
figures show that the optimal portfolio with FSPD ( �

∞
 ) has the smallest variance com-

pared with the other three FSPD estimates in all cases. We find the same phenomenon 
from the real data example followed in the next section.

6  Data example: S&P 500 data

6.1  Data and rebalancing strategy

We use daily returns of the constituents of the S&P 500 stock market index, which are 
used in Choi et al. (2019a). The dataset contains the daily returns from 3 January 1978 
to 31 December 2014. There are 9334 trading days during this period, and we only 
consider p = 91 stocks that are among the constituents of the index during the entire 
period.

Since stock return is not stationary over a long-term period, we use the rebalanc-
ing strategy to construct a portfolio. This strategy renews the portfolio periodically 
and holds it until the next update. Specifically, let �t = (rt1,… , rtp)

⊺ be a vector of 
returns on the tth date. We estimate the covariance matrix � = Var(�t) based on the 
stock returns of the past M days. Let �̂(M, t) be an estimator of � based on the data {
�s ∶ t −M ≤ s ≤ t − 1

}
 . We renew the estimate of � periodically at every L dates. 

Denote the rebalancing dates by tk = L(k − 1) + 1 for k = 1, 2,… ,K . Using the covar-
iance matrix estimate �̂(M, tk) , we obtain the optimal weight for the kth period (more 
precisely, for time tk ) by

The portfolio weights for other time points in the kth period, �t 
( t = tk + 1, tk + 2,… , tk+1 − 1 ), depend on the asset values at the time, and simple 
algebra shows that, for t = tk, tk + 1,… , tk+1 − 1 , �t = (wt1,wt2,… ,wtp)

⊤ with

where �tk
= �(k) . We construct the portfolios for the period from 2 January 1980 to 

31 December 2014 for T = 8829 trading days.

�
(k)

=

�̂(M, tk)
−1�

�⊺�̂(M, tk)
−1�

.

wtj =

(1 + r
(t−1)j)w(t−1)j

∑p

i=1
(1 + r

(t−1)i)w(t−1)i

,
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Fig. 4  Box plots of relative risk of ‘FSPD ( �
S
)’, ‘FSPD ( �

F
)’, and ‘FSPD ( ∞ )’ estimates against ‘FSPD 

( �
∞

 )’ estimate when � = �1 . ‘FSPD ( �
S
)’, ‘FSPD ( �

F
)’, and ‘FSPD ( �

∞
 )’ choose optimal � , which min-

imizes spectral norm error, Frobenius norm error, and �
∞

 norm error, respectively, and ‘FSPD ( ∞ )’ sets 
� = ∞ . Corresponding n and p values are represented in the upper left corner of each figure
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Fig. 5  Box plots of relative risk of ‘FSPD ( �
S
)’, ‘FSPD ( �

F
)’, and ‘FSPD ( ∞ )’ estimates against ‘FSPD 

( �
∞

 )’ estimate when � = �2 . ‘FSPD ( �
S
)’, ‘FSPD ( �

F
)’, and ‘FSPD ( �

∞
 )’ choose optimal � , which min-

imizes spectral norm error, Frobenius norm error, and �
∞

 norm error, respectively, and ‘FSPD ( ∞ )’ sets 
� = ∞ . Corresponding n and p values are represented in the upper left corner of each figure
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We set the formation period, or the length of the estimation window, as M = 120 
and the holding period as L = 120 . From t1 = (2 January 1980), we have K = 73 peri-
ods with L trading days. On the first day of each period, we rebalance the portfolio 
using the return data of the past M days. We consider two initial estimators, the uni-
versal thresholding estimator (‘Univ’) by Bickel and Levina (2008a) and the adaptive 
soft thresholding estimator (‘Adap’) by Cai and Liu (2011). As discussed in Sect. 3, 
both the universal and adaptive thresholding estimators are minimax optimal in the �

∞
 

norm. Along with two initial estimators, we consider eight estimators: (1) ‘Univ’; (2) 
‘Univ + FSPD ( �

SF
)’; (3) ‘Univ + FSPD ( ∞)’; (4) ‘Univ + FSPD ( �

∞
)’; (5) ‘Adap’; 

(6) ‘Adap + FSPD ( �
SF

)’; (7) ‘Adap + FSPD ( ∞)’; and (8) ‘Adap + FSPD ( �
∞

)’. When 
constructing initial thresholding estimates, we use 5-fold cross-validation to select the 
regularization parameters. ‘FSPD ( �

SF
 )’ and ‘FSPD ( ∞ )’ are the FSPD procedures by 

Choi et al. (2019b). ‘FSPD ( �
∞

 )’ is the �
∞

-FSPD modification.

6.2  Performance measures

To assess the performance of a portfolio, we use mean return, risk (standard devi-
ation), Sharpe ratio, and (normalized) wealth growth. When calculating wealth 
growth, we take the transaction costs incurred in practical trading into consideration.

The return of the portfolio at the tth date with weight �t = (wt1,… ,wtp)
⊺ , Rt , is 

defined by the weighted average of the returns �t = (rt1,… , rtp)
⊺ on invested assets:

The annualized mean return M_RET , the annualized standard deviation SD_RET of 
returns, and the Sharpe ratio SR are defined as follows:

where 252 is the usual number of trading days in a year and RF is the annualized 
geometric average of risk-free rates. According to Wharton Research Data Services 
(WRDS), during the period from 2 January 1980 to 31 December 2014, the annual-
ized average of risk-free rate was approximately 4.7%.

The turnover ratio TOk at the start of the kth period is defined by the sum of the 
absolute values of the portfolio adjustment:

The wealth growth Wt at date t is defined as follows:

RETt = Rt ∶=

p∑

j=1

wtjrtj.

M_RET ∶=

�
T�

t=1

(1 + Rt)

�252∕T

− 1

SD_RET ∶=

√
252 ⋅ sd(Rt)

SR ∶=

M_RET − RF

SD_RET

TOk ∶=

p∑

j=1

|||wtkj
− w

(tk−1)j
|||.
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where � is the cost of buying or selling a unit share of stock and the initial wealth W0 
is set to 1.

6.3  Results

6.3.1  Whole period

We first compare the performances of the portfolios for the entire period from 
January 1978 to December 2014. The annualized returns by eight methods are 
reported in Table  1. Regarding the Sharpe ratio, ‘Adap+FSPD ( �

∞
 )’ performs 

best among all methods, and ‘Univ+FSPD ( �
∞

 )’ also performs better than other 
FSPD modifications based on ‘Univ’. In addition, the initial estimator ‘Adap’ 
leads to better performance than ‘Univ’ after the PD modification. Figure 6 plots 
the normalized wealth growth and turnover of the eight methods. First, we clearly 
see the advantage of the PD modifications compared to the original with respect 
to the turnover rate and normalized wealth. As we read from the formula of the 
optimal MVP allocation, the small (or negative) eigenvalues are influential to the 
estimated optimal allocation. The PD modification makes it stable and, as a con-
sequence, significantly reduces the rate of turnover and enables greater wealth 
growth. Second, again, the initial estimator ‘Adap’ leads to better performance 
than ‘Univ’ after the PD modification. Third, although the differences are not 
large, FSPD with � = �

∞
 ( �

∞
-FSPD) performs well compared to other FSPDs. 

Figure  7 shows the eigenvalues of covariance matrix estimates �̂(M, t∗) , where 
t∗ is 1 May 2010. We can see that both ‘Univ’ and ‘Adap’ have negative eigen-
values, whereas the FSPD estimates are positive definite. We find, in both ‘Univ’ 
and ‘Adap’, large eigenvalues (eigenvalues away from 0) of FSPD with � = �

∞
 , 

which are closer to those of the initial estimators than other FSPDs ( � = �
SF
,∞ ). 

We conjecture that this results in good performance of the FSPD with � = �
∞

.

Wt ∶=

{
Wt−1(1 + Rt)(1 − �TOk) if t = tk for some k,

Wt−1(1 + Rt) otherwise ,

Table 1  Whole period: 
annualized mean return, 
annualized standard deviation of 
returns, and Sharpe ratio

Estimator Mean SD Sharpe ratio

Adap 12.579 15.040 0.5239
Adap + FSPD ( �

SF
) 13.163 12.405 0.6822

Adap + FSPD ( ∞) 13.159 12.409 0.6817
Adap + FSPD ( �

∞
) 13.210 12.396 0.6865

Univ 11.618 23.773 0.2910
Univ + FSPD ( �

SF
) 13.045 12.629 0.6608

Univ + FSPD ( ∞) 13.039 12.638 0.6598
Univ + FSPD ( �

∞
) 13.074 12.605 0.6643
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6.3.2  Subperiods: two market crises and one bull market

We next apply the methods to three subperiods. The three subperiods that we focus 
on are (i) the period from 1987-01-02 to 1988-12-30, which contains the crisis 
named Black Monday, (ii) the period from 2007-01-03 to 2008-12-31, which con-
tains the global financial crisis (GFC), and (iii) the bull run period from 2010-01-04 
to 2014-12-31 due to the rise of the tech industry. As in the whole period analysis, 
we compare the annualized mean return, annualized standard deviation of returns, 
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Fig. 6  Normalized wealth growth and turnover
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and Sharpe ratio by eight methods for each subperiod, as reported in Table 2. The 
table shows that the use of FSPD introduces a great increase in Sharpe ratio. How-
ever, the Sharpe ratios of three FSPDs are almost identical to each other. We would 
expect that this result is because the lengths of subperiods are not large enough to 
differentiate them.

We next plot the normalized wealth growth by each method in Fig. 8. From the 
figure, we find that the portfolios with FSPD perform similar to those without FSPD 
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at the beginning but become better at the end of the period. Again, the portfolios 
with different FSPDs are very close to each other, and it is difficult to differentiate 
their performance.

7  Conclusion

In this paper, in view of methodology, we propose a new FSPD modification for 
the high-dimensional regularized covariance matrix estimator, �

∞
−FSPD, which 

preserves the support and matrix �
∞

 convergence rate of the initial estimator. It 
is an extension of the FSPD modification by Choi et al. (2019b) from the spectral 
and Frobenius norms to matrix �

∞
 (equivalently, matrix �1 norm). Like the original 

FSPD, �
∞
−FSPD is optimization-free, preserves the support and matrix �

∞
 conver-

gence rate of the initial estimator, and is generic in the sense that it can be appli-
cable to any non-PD symmetric matrix including non-PD precision or correlation 
matrix estimators. Further, the matrix �

∞
 error of the initial covariance estimator 

often bounds the error of the results of the multivariate procedure using it. In this 

Table 2  Subperiods: annualized 
mean return, annualized 
standard deviation of returns, 
and Sharpe ratio

Estimator Mean SD Sharpe ratio

Sub period 1 Adap 10.570 23.156 0.2535
Adap + FSPD ( �

SF
) 11.352 21.880 0.3040

Adap + FSPD ( ∞) 11.329 21.884 0.3029
Adap + FSPD ( �

∞
) 11.368 21.878 0.3048

Univ 6.734 29.977 0.0679
Univ + FSPD ( �

SF
) 10.319 22.308 0.2519

Univ + FSPD ( ∞) 10.303 22.315 0.2511
Univ + FSPD ( �

∞
) 10.331 22.303 0.2525

Sub period 2 Adap −2.765 18.950 −0.3939
Adap + FSPD ( �

SF
) −0.276 17.797 −0.2796

Adap + FSPD ( ∞) −0.264 17.781 -0.2792
Adap + FSPD ( �

∞
) −0.287 17.810 -0.2800

Univ -8.936 21.715 -0.6279
Univ + FSPD ( �

SF
) −1.267 17.753 −0.3361

Univ + FSPD ( ∞) −1.273 17.738 −0.3368
Univ + FSPD ( �

∞
) −1.272 17.764 −0.3362

Sub period 3 Adap 16.386 13.227 0.8835
Adap + FSPD ( �

SF
) 15.269 9.900 1.0676

Adap + FSPD ( ∞) 15.300 9.895 1.0712
Adap + FSPD ( �

∞
) 15.250 9.903 1.0653

Univ 15.734 15.740 0.7010
Univ + FSPD ( �

SF
) 15.478 9.911 1.0875

Univ + FSPD ( ∞) 15.511 9.907 1.0913
Univ + FSPD ( �

∞
) 15.460 9.913 1.0854
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paper, we study the MVP optimization as an application of �
∞

-FSPD. The �
∞

 error 
of the estimated optimal portfolio allocation is bounded by the matrix �

∞
 error of 

the plug-in FSPD estimator.
Second, in view of portfolio optimization, this paper says the choice of covari-

ance matrix estimator is important in selecting portfolio from a large set of stocks. 
We find that the FSPD estimators could be a good choice for the high-dimensional 
minimum variance portfolio optimization problem. In addition, the portfolio weight 
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Fig. 8  Normalized wealth growth and turnover for each subperiod. a From 2 January 1987 to 30 Decem-
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with the �
∞
−FSPD estimator shows the best performance in both numerical study 

and real data example.
Finally, in this paper, we discuss MVP as an example whose error of the resulting 

estimator (the estimate of optimal portfolio allocation) is bounded by the matrix �
∞

 
error of the plug-in covariance matrix estimator. However, such examples could be 
numerous and are not limited to this one in particular. Another example that we have 
in mind is the high-dimensional regression wherein the sup-norm of the estimator of 
the regression coefficient is bounded by the matrix �

∞
−norm of the Gram matrix of 

the covariate vectors.
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