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Abstract

Given a set of putative 2D-2D line correspondences,
we aim to identify correct matches. Existing methods ex-
ploit the geometric constraints. They are only applica-
ble to structured scenes with orthogonality, parallelism and
coplanarity. In contrast, we propose the first approach suit-
able for both structured and unstructured scenes. Instead
of geometric constraint, we leverage the spatial regularity
on sphere. Specifically, we propose to map line correspon-
dences into vectors tangent to sphere. We use these vectors
to encode both angular and positional variations of image
lines, which is more reliable and concise than directly using
inclinations, midpoints or endpoints of image lines. Neigh-
boring vectors mapped from correct matches exhibit a spa-
tial regularity called local trend consistency, regardless of
the type of scenes. To encode this regularity, we design a
neural network and also propose a novel loss function that
enforces the smoothness constraint of vector field. In addi-
tion, we establish a large real-world dataset for image line
matching. Experiments showed that our approach outper-
forms state-of-the-art ones in terms of accuracy, efficiency
and robustness, and also leads to high generalization.

1. Introduction

2D-2D correspondences of points and lines1 are the ba-
sis of numerous computer vision algorithms [1, 4, 34]. Pu-
tative correspondences can be obtained by various meth-
ods [26, 41, 15]. In practice, these correspondences con-
sist of correct matches, i.e., inliers and mismatches, i.e.,
outliers. Outliers are caused by viewpoint differences and
repetitive patterns. Since outliers drastically affect the al-
gorithm robustness, it is important to identify inliers. Iden-
tifying inlier point correspondences has been widely stud-
ied. Most existing methods are based on geometric con-
straint [31, 38] or spatial regularity [44, 42]. The geometric
constraint-based methods leverage the fact that all the in-
liers can be fitted by the same parametric model, e.g., essen-

∗Pyojin Kim and Yun-Hui Liu are co-corresponding authors.
1 We use “line” to represent “line segment” for writing simplification.
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Figure 1. (a) A pair of lines with the same number represents a
2D-2D line correspondence. Putative correspondences consist of
inliers (blue) and outliers (red). (b) Baseline methods use the incli-
nations, midpoints, or endpoints to encode the angular, positional,
or both angular and positional variations of image lines, respec-
tively. (c) We map line correspondences into vectors tangent to
sphere. Neighboring vectors mapped from inliers exhibit a local
trend consistency (analogous to “a school of fish”).

tial matrix [12]. The spatial regularity-based methods gen-
erate 2D displacement vectors, i.e., optical flow [27] by con-
necting point correspondences. They leverage the fact that
vectors generated by inliers are regular. The above methods
are all applicable to both structured (typically man-made)
scenes with orthogonality, parallelism and coplanarity [21],
and unstructured (typical natural) scenes [40].

Compared with the above point problem, identifying in-
lier line correspondences (see Fig. 1(a)) is more challeng-
ing and has not been well studied. Existing geometric
constraint-based methods [9, 43] are only suitable for struc-
tured scenes since inliers are only geometrically constrained
in these scenes. A spatial regularity-based method can the-
oretically handle both structured and unstructured scenes,
but how to design such a method remains an open question.
Specifically, we express the spatial regularity of line cor-
respondences by both angular and positional variations of
image lines. As shown in Fig. 1(b), it is straightforward to
use the inclinations, midpoints, or endpoints to encode the
angular, positional, or both angular and positional variations
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of image lines, respectively. However, as will be shown in
Sections 3 and 6, these baseline methods may be affected
by non-association and ambiguity problems, and thus result
in unsatisfactory accuracy. Overall, a method suitable for
both structured and unstructured scenes does not exist.

We propose the first approach, which is applicable to
both structured and unstructured scenes, to identify inlier
line correspondences. Instead of geometric constraint, we
leverage the spatial regularity on sphere. Specifically, we
propose to map line correspondences into vectors tangent
to sphere. We use these vectors to encode both angular and
positional variations of image lines, which is more reliable
and concise than directly using inclinations, midpoints or
endpoints of image lines. As shown in Fig. 1(c), neighbor-
ing vectors mapped from inliers (but not outliers) exhibit a
spatial regularity called local trend consistency, regardless
of the type of scenes. To encode this regularity, we design a
neural network and also propose a novel loss function that
enforces the smoothness constraint of vector field [29]. In
addition, existing datasets for image line matching are ei-
ther small [24, 32] or only provide synthetic images [17]. To
solve this problem, we establish a large real-world dataset
composed of 11,934 image pairs, and provide a tool to au-
tomatically extend it. Our main contributions are:
• We propose a novel image-to-sphere mapping to gen-

erate vectors tangent to sphere. These vectors solve
the non-association and ambiguity problems, and in-
lier vectors exhibit a spatial regularity.
• We propose a novel loss function to learn the spatial

regularity of vectors tangent to sphere. Accordingly,
our approach is the first one applicable to both struc-
tured and unstructured scenes.
• We establish a large real-world dataset for image line

matching. Our dataset and tool for dataset extension
are publicly available.2

Experiments showed that our approach outperforms state-
of-the-art ones in terms of accuracy, efficiency and robust-
ness, and also leads to high generalization.

2. Related Works
Image Line Extraction. Many methods, e.g., LSD [36]

and Linelet [7] exploit the image gradient. They first detect
edges based on gradient magnitude and then group these
edges into lines based on gradient orientation. However,
they are prone to resulting in incomplete and ambiguous
line extraction. In contrast, state-of-the-art deep learning-
based method [37] avoids edge detection. It reformulates
line extraction as a region coloring problem and solves this
problem by learning the regional attraction.

Image Line Matching. This work generates putative
line correspondences, i.e., the input of inlier identification

2https : / / sites . google . com / view / haoangli / projects /
inlier_line_corres

approaches introduced in the next paragraph. Most exist-
ing methods measure the similarity between two lines in
terms of visual appearance around these lines. Visual ap-
pearance can be encoded by either handcrafted features or
the features learned by neural networks. For example, LBD
descriptor [41] is a widely used handcrafted feature. It com-
putes the gradient histogram around an independent line.
RPR descriptor [43] is another handcrafted feature describ-
ing an area defined by a pair of lines. DLD descriptor [17]
is learned by a neural network. It is more suitable for low-
textured environments than the above handcrafted features.

Identifying Inlier Line Correspondences. A spatial
regularity-based method does not exist since endpoints of
a line correspondence may be non-associated. In the fol-
lowing, we introduce existing geometric constraint-based
methods. We classify them into two categories in terms
of application scenarios, i.e., two or three images. On two
images, geometric constraints rely on particular structures.
Specifically, relative image pose geometrically constrains
the inliers of 2D-2D line correspondences associated with
1) orthogonal and parallel 3D lines [9], or 2) coplanar 3D
lines [43]. The integration of a relative pose estimation
method [9, 43] and RANSAC [10] computes the optimal
pose fitting the largest number of correspondences, and also
treats these correspondences as inliers. The above integra-
tions are not very practical for two reasons. First, they are
only applicable to structured scenes. Second, their used cor-
respondences satisfying the structure assumptions are rela-
tively difficult to sample. In contrast, our approach is suit-
able for both structured and unstructured scenes. Moreover,
it provides higher accuracy, efficiency and robustness than
the above integrations, as will be shown in the experiments.

On three images, trifocal tensor [11] geometrically con-
strains the inliers of 2D-2D-2D line correspondences. Mi-
cusik et al. [30] used the integration of a trifocal tensor
estimation method and RANSAC to compute trifocal ten-
sor and identify inliers. However, computing trifocal tensor
commonly requires more than 9 inliers [18]. Sampling such
inliers requires a large number of iterations, resulting in un-
satisfactory efficiency and robustness. Another inlier iden-
tification method [20] begins with using the known poses of
the first two images to triangulate 3D lines. Then it matches
these 3D lines against 2D lines in the third image whose
pose is unknown. Given these putative 3D-2D line corre-
spondences, the integration of an absolute image pose esti-
mation method and RANSAC computes the pose and iden-
tifies inliers. Since this method requires the known poses of
the first two images, its generality is low.

3. Image-to-sphere Mapping
To explore the spatial regularity of line correspondences,

we propose to map line correspondences into vectors tan-
gent to sphere. We use these vectors to encode both angular
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Figure 2. (a, b) Baseline methods in the image lead to ambi-
guity and/or non-association problems. (c) Given a 2D-2D line
correspondence (lL, lR), we compute the unit projection plane nor-
mals nL and nR. (d) We move nR to the left sphere and keep its
coordinates unchanged. (e) The plane ω is tangent to sphere at the
point tL. We map the point tR into the point rR lying on ω, and
then connect tL and rR to define the vector v tangent to sphere.

and positional variations of image lines. In the following,
we first introduce the motivation of our mapping by illus-
trating the limitations of various baseline methods.

Baseline Methods in Image. As shown in Fig. 2(a),
BL-Ang uses a pair of inclinations (θL, θR) to encode the
angular variation of an inlier line correspondence (lL, lR).
However, this inlier and an outlier (lL, l̃R) provide similar
angular variations. Such an ambiguity problem results in
some indistinguishable outliers. As shown in Fig. 2(b), BL-
Pos uses a pair of midpoints (mL,mR) to encode the po-
sitional variation of an inlier line correspondence (lL, lR).
However, this inlier and an outlier (lL, l̂R) provide similar
positional variations. Moreover, the midpoints (mL,mR)
may be non-associated due to incomplete image line de-
tection [36]. Such ambiguity and non-association prob-
lems result in some indistinguishable outliers. As shown in
Fig. 2(a), BL-Ang-Pos uses two pairs of endpoints (sL, sR)
and (eL, eR) to encode both angular and positional varia-
tions of an inlier line correspondence (lL, lR). However, a
pair of endpoints may be non-associated, which is similar to
the above non-associated midpoints. Moreover, compared
with our vectors tangent to sphere (introduced below), two
pairs of endpoints are redundant and thus increase the diffi-

Right
Camera

Left Camera

3D Lines

Tangent VectorsRight
Image

Left
Image

Large Relative Camera Rotation and Translation
3D Lines

Left
Camera

Right
Camera

Tangent VectorsRight 
Image

Left 
Image

Small Relative Camera Rotation and Translation
Figure 3. Given a set of 2D-2D line correspondences, we gen-
erate vectors tangent to sphere. These vectors exhibit the spatial
regularity, regardless of the type and magnitude of camera motion.

culty of learning. As will be shown in the experiments, the
above baseline methods provide unsatisfactory accuracy.

Our Method on Sphere. To overcome the limitations
of the above baselines, we propose a novel image-to-sphere
mapping. Fig. 2(c) shows that a line correspondence (lL, lR)
is associated with an unobservable 3D line L. Let us con-
sider the line lL in the left image to illustrate the projec-
tive geometry. Specifically, lL and the left camera center
define a projection plane πL. We compute it by πL =(
K [I | 0]

)>
lL, where K denotes the known intrinsic ma-

trix obtained by calibration [12], I denotes a 3 × 3 identity
matrix, 0 denotes a 3× 1 zero vector. We compute the unit
normal nL of the projection plane πL. Similarly, we obtain
the unit normal nR of the projection plane πR. The nor-
mals nL and nR are independent of the endpoints of lines lL

and lR, respectively. Therefore, we solve the problem that
endpoints of lines lL and lR are non-associated.

As shown in Fig. 2(d), we move the normal nR to the left
sphere and keep its coordinates unchanged. Accordingly,
the terminal points tL and tR of the normals nL and nR both
lie on the left sphere. Note that we do not treat the vector u
defined by tL and tR as our displacement vector. The reason
is that u passes through the sphere, and thus exploring its
spatial regularity is difficult.3 Instead, as shown in Fig. 2(e),
we define our displacement vector by the vector v tangent to
sphere. Specifically, we treat the point tL as the initial point
of vector v. We exploit Riemann mapping [8] to project
the point tR as the point rR lying on the tangent plane ω,
and treat rR as the terminal point of vector v. Note that we
do not use orthogonal projection to project the point tR to
the plane ω. The reason is that orthogonal projection may
result in ambiguity, i.e., tR and another point on sphere may
lead to the same orthogonal projection on the plane ω.

3Intuitively, this problem is analogous to some cases that Euclidean
distance is less appropriate than geodesic distance on sphere [3, 22].
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Figure 4. Illustration of local vector field fitting. (a) Outlier-free
vectors {vm}Mm=1. (b) We find a local vector field ϕ that min-
imizes the difference between the observations {vm}Mm=1 and
predictions {ϕ(tm)}Mm=1. (c) We use ϕ to interpolate the vec-
tors {ϕ(pz)}Zz=1 starting at some sampled points {pz}Zz=1.

4. Learning Spatial Regularity on Sphere
Based on the above image-to-sphere mapping, given N

putative line correspondences, we generate N tangent vec-
tors. By leveraging the spatial regularity of these vectors,
we propose a neural network to predict the inlier probabil-
ity of each vector. Our main contribution is a novel loss
function to learn the spatial regularity.

4.1. Loss Function

Local Trend Consistency (LTC) Loss. As shown in
Fig. 1(c), neighboring vectors generated by inliers exhibit
the spatial regularity on sphere. We call this regularity LTC.
As shown in Fig. 3, we follow [19] to synthesize 3D lines
and cameras with various relative rotation and translations.
LTC is valid regardless of the type and magnitude of cam-
era motion. In addition, we observe that a scene with sig-
nificant depth variation may lead to multiple sets of vec-
tors that correspond to different LTCs but overlap with each
other, which is similar to the point problem [28]. Therefore,
we recommend using our LTC for the images with relatively
small depth variations.

a) Basis of Modeling LTC. We introduce the local vector
field fitting that is the basis of modeling LTC. In our con-
text, intuitively, a local vector field is composed of numer-
ous vectors starting at different positions in a local area of
sphere. Mathematically, we parametrize a local vector field
by a vector-valued function whose input is an arbitrary po-
sition in a local area and output is a 3D vector [29, 23]. To
facilitate understanding, let us consider an outlier-free case
to illustrate the local vector field fitting. Fig. 4(a) shows M
vectors {vm}Mm=1 starting at the points {tm}Mm=1 in a lo-
cal area. We use these vectors to fit a local vector field ϕ.
Specifically, as shown in Fig. 4(b), we aim to find the opti-
mal function ϕ(·) that minimizes the difference between the
observations {vm}Mm=1 and predictions {ϕ(tm)}Mm=1, i.e.,

min
ϕ

M∑
m=1

pm · ‖vm − ϕ(tm)‖. (1)

where pm denotes the predicted inlier probability whose
ground truth value is 1 in this outlier-free case.

(a) Input Vectors

(c) 6.41

(b) 9.48

(d) 0.43

A Local
Area

Rough
Vector Field

Moderate
Vector Field

Smooth
Vector Field

Interpolated 
Vector

Figure 5. Effectiveness of our LTC loss. (a) Input vectors con-
sist of inliers {vi} (blue) and outliers {vj} (red). (b,c,d) We
assign these vectors with different inlier probabilities (pi, pj) ∈
{(0.5, 0.5), (0.8, 0.2), (0.99, 0.01)} to fit local vector fields. A
number below each sphere represents our LTC loss in Eq. (4).

We span the local vector field ϕ by M unknown-but-
sought basis vectors {cm}Mm=1 [29]. Accordingly, we refor-
mulate fitting a local vector field ϕ as computing its basis
vectors {cm}Mm=1. Specifically, we first linearly express the
prediction ϕ(tm) in Eq. (1) by unknown-but-sought basis
vectors {cm}Mm=1. For example, we express ϕ(t1) by

ϕ(t1) =
M∑
m=1

e1←m · cm. (2)

The coefficient e1←m encodes the effect of the basis vec-
tor cm. Intuitively, e1←m is inversely proportional to
the distance from tm to t1. To define this coefficient,
we use Gaussian kernel [39]. Then we substitute the
above linear expressions of {ϕ(tm)}Mm=1 (e.g., Eq. (2)) into
Eq. (1), obtaining a linear system to compute the basis vec-
tors {cm}Mm=1 [29]:

(P−1 +E) [c1, c2, · · · cM ]>︸ ︷︷ ︸
C ∈ RM×3

= [v1,v2, · · ·vM ]>, (3)

where P is an M × M diagonal matrix composed of the
inlier probabilities {pm}Mm=1 in Eq. (1), and E is anM×M
matrix composed of the coefficients in Eq. (2) (for example,
its first row is [e1←1, e1←2, · · · e1←M ]). In the following,
we use the computed basis vectors {cm}Mm=1 to model LTC
and define our LTC loss.

b) Modeling LTC and Defining LTC Loss. Intuitively,
a high-level LTC of vectors corresponds to a high-level
“smoothness” of the local vector field ϕ. Accordingly, we
model LTC by this smoothness that can be evaluated by the
norm in reproducing kernel Hilbert spaceH [29] as

‖ϕ‖H=
1

M

3∑
w=1

Cw
>ECw → LLTC, (4)

where Cw denotes the w-th column of the matrix C in
Eq. (3), and E is defined in Eq. (3). The smaller norm ‖ϕ‖H
is, the higher-level LTC is. Therefore, we treat ‖ϕ‖H as our
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Figure 6. Pipeline of our network. Each input data is defined by
a vector tangent to sphere. We take the n-th data for example to
illustrate how our network predicts the inlier probability pn.

LTC loss. In addition to quantitative evaluation of our LTC
loss, we provide a visual evaluation. Specifically, as shown
in Fig. 4(c), we uniformly sample some positions {pz}Zz=1

in the local area. At each position pz , we use the computed
basis vectors {cm}Mm=1 to interpolate a vector ϕ(pz) (sim-
ilar to Eq. (2)). The more regular vectors {ϕ(pz)}Zz=1 are,
the smaller our LTC loss is.

c) An Example. As shown in Fig. 5(a), let us consider
10 vectors in a local area to illustrate the effectiveness of
our LTC loss. The vectors {vi} (i ∈ {1, 3, 4, 5, 7, 9}) are
inliers, and {vj} (j ∈ {2, 6, 8, 10}) are outliers. We vary
their inlier probabilities pi and pj within [0, 1] to mimic dif-
ferent values predicted by our network. We use these vec-
tors and probabilities to compute our LTC loss by Eqs. (3)
and (4). We also visually evaluate our LTC loss by inter-
polation (similar to Fig. 4(c)). We report some representa-
tive results as follows. In Fig. 5(b), (pi, pj) = (0.5, 0.5),
i.e., predictions significantly deviate from ground truth val-
ues (1, 0). Accordingly, our LTC loss is high. In Fig. 5(c),
(pi, pj) = (0.8, 0.2), i.e., predictions approach ground truth
values. Accordingly, our LTC loss decreases. In Fig. 5(d),
(pi, pj) = (0.99, 0.01), i.e., predictions are nearly equal to
ground truth values. Accordingly, our LTC loss is low.

Binary Cross Entropy (BCE) Loss. The purpose of
using BCE loss [5] is to guarantee satisfactory and consis-
tent accuracy (that may not be high enough). Specifically, a
small number of vectors may not be clustered into any local
area, and thus are not constrained by our LTC loss. In con-
trast, BCE loss enforces the constraint on each vector vn.

Total Loss. Our total loss is the combination of the
above LTC and BCE losses. Given N vectors, we em-
ploy robust spectral clustering [25] to group their initial
points into S local areas (other algorithms can be used in-
stead). A set of points in the same cluster constitute a local
area. For each area, we compute our LTC loss based on
Eq. (4). Moreover, for each of N vectors, we compute BCE
loss LBCE

n . Our total loss is given by

Ltotal =
1

S

S∑
s=1

LLTC
s + λ · 1

N

N∑
n=1

LBCE
n , (5)

where λ controls the trade-off between two losses. Collab-
oration between LTC and BCE losses is analogous to data

L
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Figure 7. Illustrating how we automatically label a 2D-2D line
correspondence (lLn, l

R
n) as an inlier (blue) or outlier (red) for our

LRW dataset establishment.

and smooth terms in well-known graph cut [6]. Specifically,
using only BCE loss may lead to a relatively rough vector
field due to over-fitting. LTC loss can enforce smoothness
constraint to correct errors.

4.2. Network

As shown in Fig. 6, we express each tangent vector vn
by concatenating its 3 × 1 initial and terminal points (see
Fig. 2(e)) vertically, i.e., vn ← [tL

n; r
R
n]. Accordingly, N

vectors {v>n }Nn=1 constitute an N × 6 input matrix. In-
spired by [42], we first extract the global feature for each
vector vn. Specifically, we compute the pairwise simi-
larities between vn and all the other vectors by a self-
attention module [35]. We integrate this similarity infor-
mation into vn to enrich the expression of vn. Then we
extract the local feature for vn. Specifically, we exploit k-
nearest neighbor (k-NN) search [5] to retrieve k neighbor-
ing vectors of vn. We aggregate the enriched expressions
of these k vectors to obtain a local feature of vn. We fur-
ther extract features by a series of residual blocks [13]. Fi-
nally, we process the above features by a multi-layer percep-
tron (MLP) and a Sigmoid activation, obtaining N numbers
within [0, 1]. The n-th number corresponds to the predicted
inlier probability pn of the vector vn. If pn > 0.5, we
treat vn as an inlier. Otherwise, we treat vn as an outlier.

5. Our Dataset
Existing datasets for image line matching are either

small [24, 32] or only provide synthetic images [17]. In con-
trast, we establish a large real-world (LRW) dataset com-
posed of 11,934 pairs of images. We obtain these im-
ages from 8 sequences of TUM dataset [33]. We associate
each image pair with a set of putative line correspondences
whose ground truth labels are known. In our experiments,
we select 80% and 20% of image pairs for training and test-
ing, respectively.

We provide a tool that can automatically generate the pu-
tative 2D-2D line correspondences and label them. Specifi-
cally, on each sequence, we continuously sample three con-
secutive images using different sampling resolutions. The
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Figure 8. Accuracy and efficiency comparisons on representative image pairs of our LRW dataset. The first row shows putative line
correspondences. Ground truth inliers and outliers are shown in blue and red, respectively. The second, third and fourth rows present the
inlier identification results. True positive and true negative are shown in blue and red, respectively; False positive and false negative are
shown in cyan and yellow, respectively. A quadruplet of numbers below each image pair represents {precision, recall, F1-score, runtime}.

purpose of sampling three (instead of two) images is to
solve the problem that 2D-2D line correspondences are not
geometrically constrained. Fig. 7 shows a sampled image
triplet. We extract image lines by LSD [36] and match these
lines across three images by LBD descriptor [41], generat-
ing putative 2D-2D-2D correspondences {(lLn, lRn, lVn)}Nn=1.
We use each 2D-2D correspondence (lLn, l

R
n) to triangulate

a 3D line Ln, and then project Ln to the validation image
as lPn. We compute the reprojection errors [2], i.e., the or-
thogonal distances en and e′n between the observation lVn
and the endpoints of projection lPn. If (en+e′n)/2 is smaller
than 5 pixels, we label the correspondence (lLn, l

R
n) as an in-

lier. Otherwise, we label (lLn, l
R
n) as an outlier.

6. Experiments

We denote our deep learning-based approach that lever-
ages the spatial regularity on sphere by DL-SPA. We
compare our DL-SPA with state-of-the-art methods in Sec-
tion 6.1. We conduct ablation studies of our image-to-
sphere mapping and loss function in Section 6.2. We evalu-
ate the generalization of our DL-SPA in Section 6.3.

Implementation Details. We set the parameter λ in
Eq. (5) as 2, and the parameter k of k-NN search as 8. We
use Adam [16] to train our network. The learning rate is
10−3, batch size is 32, and number of epochs is 30.

Evaluation Criteria. We call a correctly identified in-
lier “true positive (TP)”, and wrongly identified inlier “false
positive (FP)”. We call a correctly identified outlier “true
negative (TN)”, and wrongly identified outlier “false neg-
ative (FN)”. We follow [42] to evaluate the algorithm ac-
curacy by precision, recall and F1-score. Specifically,
precision= δ(TP)

δ(TP)+δ(FP) and recall= δ(TP)
δ(TP)+δ(FN) where δ(·)

denotes the cardinality. F1-score= 2·precision·recall
precision+recall .

6.1. Comparison with State-of-the-art Methods

As introduced in Section 2, existing methods to identify
inliers of 2D-2D line correspondences exploit the geometric
constraints. We compare our DL-SPA with the state-of-the-
art ones:
• Integrating RANSAC [10] with the camera pose esti-

mation method that requires a “2D-2D line correspon-
dence triplet” [9]. This triplet is projected from a 3D
line triplet whose two lines are mutually parallel and
orthogonal to the third. We denote this integration
by RAN-PnO.
• Integrating RANSAC [10] with the camera pose es-

timation method that requires a “2D-2D line corre-
spondence pair” [43]. This pair is projected from
two coplanar 3D lines. We denote this integration
by RAN-COP.
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Table 1. Accuracy and efficiency comparisons on five sequences (SQ) of our LRW dataset. We present the mean of each metric.

Outlier
Ratio

DL-SPA (our) RAN-PnO [10, 9] RAN-COP [10, 43]

Precision Recall F1-score Runtime Precision Recall F1-score Runtime Precision Recall F1-score Runtime

SQ1 31.73% 94.53% 97.54% 95.96% 0.013 s 91.42% 71.16% 79.23% 4.847 s 93.15% 59.51% 71.86% 1.549 s

SQ2 32.91% 93.19% 97.68% 95.33% 0.016 s 83.68% 66.54% 74.13% 9.340 s 92.51% 68.73% 78.12% 2.546 s

SQ3 36.61% 91.62% 98.30% 94.76% 0.014 s 90.29% 60.87% 71.04% 5.213 s 95.20% 59.80% 72.38% 1.475 s

SQ4 25.98% 91.63% 98.72% 94.95% 0.011 s 82.85% 65.60% 73.16% 6.457 s 95.60% 67.18% 78.42% 1.854 s

SQ5 29.48% 93.57% 98.00% 95.64% 0.011 s 82.58% 63.94% 71.42% 6.753 s 91.19% 73.98% 81.03% 1.610 s

Figure 9. Robustness comparisons with respect to outlier ratio on
five sequences of our LRW dataset. We present the evolutions of
average precision, recall and F1-score.

Note that RAN-PnO and RAN-COP are only applicable to
structured scenes. For a fair comparison, from our LRW
dataset, we select five sequences obtained in structured
scenes. Fig. 8 and Table 1 present the comparisons in terms
of accuracy and efficiency.

Accuracy. Our DL-SPA achieves the highest F1-score,
demonstrating that learning the spatial regularity on sphere
is effective. In contrast, RAN-PnO and RAN-COP lead to
unsatisfactory F1-scores that are mainly affected by recalls.
The reason is that sampling a “valid” 2D-2D line correspon-
dence triplet or pair is relatively difficult. Specifically, cor-
respondences of a valid triplet or pair should not only be
inliers, but also exactly satisfy the above structure assump-
tion. For example, RAN-PnO samples three inlier corre-
spondences that are not associated with orthogonal or paral-
lel 3D lines, i.e., an invalid triplet. These correspondences
result in wrong relative pose estimation, which affects the
precision. Moreover, they cannot be fitted by the correct
pose estimated by a valid triplet, which affects the recall.

Efficiency. Our DL-SPA achieves the highest efficiency,
demonstrating the superiority of deep learning in this task.
In contrast, RAN-PnO and RAN-COP are time-consuming
for two main reasons. First, they quasi-exhaustively use
three or two line correspondences to generate numerous
candidate correspondence triplets or pairs. Second, as men-
tioned above, sampling a valid correspondence triplet or
pair is relatively difficult. Accordingly, these methods re-
quire a large number of iterations (higher than 1000 in gen-
eral) based on the probabilistic guarantee [12].

Robustness. We train our DL-SPA on the original LRW
dataset whose average outlier ratio is 31.34%. We vary the
outlier ratio from 30% to 90% by perturbing inlier corre-
spondences. We test all the methods under different outlier

Spatial Regularity
(Local Trend Consistency)

(a) 48 Inliers in an Unstructured Scene (b) 3D Tangent Vectors
Figure 10. (a) Ground truth inlier line correspondences on a repre-
sentative image pair of our LRW dataset (we do not show outliers
on purpose). (b) Based on these inlier correspondences, we gener-
ate 3D tangent vectors by our image-to-sphere mapping.

Table 2. Comparing our
DL-SPA with various baseline
methods on all the test data of
our LRW dataset.

F1-score

BL-Ang 82.73%

BL-Pos 84.45%

BL-Ang-Pos 88.80%

DL-SPA (our) 93.71%

Irregular

Figure 11. 2D displacement
vectors generated by connect-
ing the midpoints of image line
correspondences in Fig. 10(a).

ratios. As shown in Fig. 9, our DL-SPA is relatively ro-
bust (especially in terms of precision) since inlier vectors al-
ways exhibit LTC regardless of the outlier ratio. In contrast,
the accuracies of RAN-PnO and RAN-COP drastically de-
crease as the outlier ratio increases. The reason is that a
high outlier ratio is prone to resulting in invalid sampling.

6.2. Ablation Studies

Image-to-sphere Mapping. As introduced in Section 3,
we map line correspondences into vectors tangent to sphere.
Fig. 10 shows a representative test. Tangent vectors gener-
ated by inliers all exhibit LTC. In the following, we compare
our DL-SPA leveraging the LTC of tangent vectors with var-
ious baseline methods in the image (see Section 3). Except
for the input, the network architectures of various baselines
are the same as the architecture of DL-SPA (see Fig. 6). We
use the same image pairs of our LRW dataset to train and
test various baselines and our DL-SPA. Accordingly, the in-
puts of BL-Ang, BL-Pos, BL-Ang-Pos and our DL-SPA are
N × 2, N × 4, N × 8 and N × 6 matrices, respectively.
Table 2 shows that our DL-SPA is more accurate than vari-
ous baselines. The reason is that our 3D tangent vectors are
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(a) 61 Inliers and 35 Outliers in a Structured Scene

Correction

{87.14%, 98.39%, 92.42%} {95.31%, 98.39%, 96.83%}
(b) BCE Loss (c) BCE & LTC Losses

Figure 12. (a) Putative line correspondences on a representative
image pair of our LRW dataset. Ground truth inliers and outliers
are shown in blue and red, respectively. (b,c) We compare our
DL-SPA trained by only BCE loss, and the combination of BCE
and LTC losses. True positive and true negative are shown in blue
and red, respectively; False positive and false negative are shown
in cyan and yellow, respectively. A triplet of numbers below each
sphere represents {precision, recall, F1-score}.

Table 3. Comparing our DL-SPA trained by only BCE loss, and
the combination of BCE and LTC losses on all the test data of our
LRW dataset. We present the average F1-score.

BCE Loss BCE & LTC Losses

SQ1 93.64% 95.96% (↑ 2.32%)

SQ2 94.25% 95.33% (↑ 1.08%)

SQ3 92.23% 94.76% (↑ 2.53%)

SQ4 92.84% 94.95% (↑ 2.11%)

SQ5 94.82% 95.64% (↑ 0.82%)

SQ6 94.01% 95.92% (↑ 1.91%)

SQ7 94.09% 95.34% (↑ 1.25%)

SQ8 93.87% 94.76% (↑ 0.89%)

regular and also solve the ambiguity, non-association and
redundancy problems (see Fig. 11).

Loss Function. Recall that our total loss in Eq. (5) is the
combination of BCE and LTC losses. On our LRW dataset,
we train our DL-SPA by only BCE loss, and the combina-
tion of BCE and LTC losses, respectively. As mentioned in
Section 4.1, we do not train our DL-SPA by only LTC loss.
Fig. 12 and Table 3 show that our DL-SPA trained by only
BCE loss provides relatively high accuracy since BCE loss
is suitable for inlier/outlier identification, a binary classifi-
cation problem. Our DL-SPA trained by the combination
of BCE and LTC losses improves the accuracy. The reason
is that our LTC loss enforces the smoothness constraint of
vector field and thus corrects some false positives.

6.3. Generalization Evaluation

Recall that we train our DL-SPA on our LRW dataset.
In this section, we test its generalization on a new dataset,
i.e., EPFL dataset [32]. Ground truth inlier and out-

{95.60%, 98.86%, 97.21%, 0.014s}
Figure 13. Evaluating the generalization of our DL-SPA on a rep-
resentative image pair of EPFL dataset [32]. Denotations are the
same as those in Fig. 8.

{91.89%, 97.88%, 94.68%} {93.19%, 98.03%, 95.46%}
(a) EPFL Dataset (b) Our LRW Dataset

Figure 14. Evaluating the generalization of our DL-SPA by com-
paring the results on all the test data of (a) EPFL dataset [32] and
(b) our LRW dataset. A triplet of numbers below each image rep-
resents the means of {precision, recall, F1-score}.

lier line correspondences of EPFL dataset are provided by
Line3D++ [14]. As shown in Figs. 13 and 14, the accuracy
of our DL-SPA on EPFL dataset is similar to that on our
LRW dataset for two main reasons. First, the spatial reg-
ularity on sphere is independent of image appearance. In-
stead, it depends on relative motions between two images.
On our LRW dataset, we use various motions to generate
the training data. These motions nearly cover the motions
on EPFL dataset. Second, the spatial regularity on sphere is
independent of image resolution. Specifically, the length
of an image line does not affect the vector generated by
our image-to-sphere mapping. Therefore, while images of
EPFL and our LRW datasets have different appearances and
resolutions, our DL-SPA can handle both datasets well.

7. Conclusions
We propose a novel approach to identify inliers of puta-

tive 2D-2D line correspondences. Our approach is the first
one suitable for both structured and unstructured scenes.
To achieve this goal, we leverage the spatial regularity on
sphere. We propose a novel image-to-sphere mapping to
generate vectors tangent to sphere. Moreover, we propose a
novel loss function to learn LTC of vectors. In addition, we
establish a large real-world dataset for image line matching.
Experiments showed that our approach outperforms state-
of-the-art ones in terms of accuracy, efficiency and robust-
ness, and also leads to high generalization.
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