
sensors

Article

Enhanced Single Image Super Resolution Method Using
Lightweight Multi-Scale Channel Dense Network

Yooho Lee 1 , Dongsan Jun 1,*, Byung-Gyu Kim 2 and Hunjoo Lee 3

����������
�������

Citation: Lee, Y.; Jun, D.; Kim, B.-G.;

Lee, H. Enhanced Single Image Super

Resolution Method Using Lightweight

Multi-Scale Channel Dense Network.

Sensors 2021, 21, 3351. https://

doi.org/10.3390/s21103351

Academic Editor: Petros Daras

Received: 11 April 2021

Accepted: 10 May 2021

Published: 12 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Convergence IT Engineering, Kyungnam University, Changwon 51767, Korea;
yhlee@kyungnam-ispl.kr

2 Department of IT Engineering, Sookmyung Women’s University, Seoul 04310, Korea;
bg.kim@sookmyung.ac.kr

3 Intelligent Convergence Research Laboratory, Electronics and Telecommunications Research Institute (ETRI),
Daejeon 34129, Korea; hjoo@etri.re.kr

* Correspondence: dsjun9643@kyungnam.ac.kr

Abstract: Super resolution (SR) enables to generate a high-resolution (HR) image from one or more
low-resolution (LR) images. Since a variety of CNN models have been recently studied in the areas
of computer vision, these approaches have been combined with SR in order to provide higher
image restoration. In this paper, we propose a lightweight CNN-based SR method, named multi-
scale channel dense network (MCDN). In order to design the proposed network, we extracted the
training images from the DIVerse 2K (DIV2K) dataset and investigated the trade-off between the SR
accuracy and the network complexity. The experimental results show that the proposed method can
significantly reduce the network complexity, such as the number of network parameters and total
memory capacity, while maintaining slightly better or similar perceptual quality compared to the
previous methods.

Keywords: deep learning; super resolution; convolutional neural network; lightweight neural network

1. Introduction

Real-time object detection techniques have been applied to a variety of computer
vision areas [1,2], such as object classification or object segmentation. Since it is mainly
operated on the constrained environments, input images obtained from those environments
can be deteriorated by camera noises or compression artifacts [3–5]. In particular, it is
hard to detect objects from the images with low quality. Super resolution (SR) method
aims at recovering a high-resolution (HR) image from a low-resolution (LR) image. It is
primarily deployed on the various image enhancement areas, such as the preprocessing
for object detection [6] of Figure 1, medical images [7,8], satellite images [9], and surveil-
lance images [10]. In general, most SR methods can be categorized into single-image SR
(SISR) [11] and multi-image SR (MISR). Deep neural network (DNN) based SR algorithms
have been developed with various neural networks such as convolutional neural network
(CNN), recurrent neural network (RNN), long short-term memory (LSTM), and generative
adversarial network (GAN). Recently, convolutional neural network (CNN) [12] based
SISR approaches can provide powerful visual enhancement in terms of peak signal-to-noise
ratio (PSNR) [13] and structural similarity index measure (SSIM) [14].

SR was initially studied pixel-wise interpolation algorithms, such as bilinear and
bicubic interpolations. Although these approaches can provide fast and straightforward
implementations, it had limitations in improving SR accuracy to represent complex tex-
tures in the generated HR image. As various CNN models have been recently studied
in computer vision areas, these CNN models have been applied to SISR to surpass the
conventional pixel-wise interpolation methods. In order to achieve higher SR performance,
several deeper and denser network architectures have been combined with the CNN-based
SR networks.

Sensors 2021, 21, 3351. https://doi.org/10.3390/s21103351 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9714-6799
https://orcid.org/0000-0001-6555-3464
https://www.mdpi.com/article/10.3390/s21103351?type=check_update&version=1
https://doi.org/10.3390/s21103351
https://doi.org/10.3390/s21103351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21103351
https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 3351 2 of 17
Sensors 2021, 21, x FOR PEER REVIEW 2 of 18

Figure 1. Example of CNN-based SR applications in the area of object detection.

SR was initially studied pixel-wise interpolation algorithms, such as bilinear and
bicubic interpolations. Although these approaches can provide fast and straightforward
implementations, it had limitations in improving SR accuracy to represent complex tex-
tures in the generated HR image. As various CNN models have been recently studied in
computer vision areas, these CNN models have been applied to SISR to surpass the con-
ventional pixel-wise interpolation methods. In order to achieve higher SR performance,
several deeper and denser network architectures have been combined with the CNN-
based SR networks.

As shown in Figure 2, the inception block [15] was designed to obtain the sparse fea-
ture maps by adjusting the different kernel sizes. He et al. [16] proposed a ResNet using
the residual block, which learns residual features with skip connections. It should be
noted that CNN models with the residual block can support high-speed training and
avoid the gradient vanishing effects. In addition, Huang et al. [17] proposed densely con-
nected convolutional networks (DenseNet) with the concept of dense block that combines
hierarchical feature maps along the convolution layers for the purpose of richer feature
representations. As the feature maps of the previous convolution layer are concatenated
with those of the current convolution layer within a dense block, it requires more memory
capacity to store massive feature maps and network parameters. In this paper, we propose
a lightweight CNN-based SR model to reduce the memory capacity as well as the network
parameters. The main contributions of this paper are summarized as follows:
• We propose multi-scale channel dense block (MCDB) to design the CNN based light-

weight SR network structure.
• Through a variety of ablation works, the proposed network architectures are opti-

mized in terms of the optimal number of the dense blocks and the dense layers.
• Finally, we investigate the trade-off between the network complexity and the SR per-

formance on publicly available test datasets compared to the previous method.
The remainder of this paper is organized as follows. In Section 2, we briefly overview

the previous studies related to CNN-based SISR methods. In Section 3, we describe the
proposed network framework. Finally, experimental results and conclusions are given in
Sections 4 and 5, respectively.

Figure 1. Example of CNN-based SR applications in the area of object detection.

As shown in Figure 2, the inception block [15] was designed to obtain the sparse
feature maps by adjusting the different kernel sizes. He et al. [16] proposed a ResNet using
the residual block, which learns residual features with skip connections. It should be noted
that CNN models with the residual block can support high-speed training and avoid the
gradient vanishing effects. In addition, Huang et al. [17] proposed densely connected con-
volutional networks (DenseNet) with the concept of dense block that combines hierarchical
feature maps along the convolution layers for the purpose of richer feature representations.
As the feature maps of the previous convolution layer are concatenated with those of the
current convolution layer within a dense block, it requires more memory capacity to store
massive feature maps and network parameters. In this paper, we propose a lightweight
CNN-based SR model to reduce the memory capacity as well as the network parameters.
The main contributions of this paper are summarized as follows:

• We propose multi-scale channel dense block (MCDB) to design the CNN based
lightweight SR network structure.

• Through a variety of ablation works, the proposed network architectures are optimized
in terms of the optimal number of the dense blocks and the dense layers.

• Finally, we investigate the trade-off between the network complexity and the SR
performance on publicly available test datasets compared to the previous method.

The remainder of this paper is organized as follows. In Section 2, we briefly overview
the previous studies related to CNN-based SISR methods. In Section 3, we describe the
proposed network framework. Finally, experimental results and conclusions are given in
Sections 4 and 5, respectively.

Sensors 2021, 21, 3351 3 of 17Sensors 2021, 21, x FOR PEER REVIEW 3 of 18

Figure 2. Examples of CNN-based network blocks. (a) Inception block; (b) residual block; and
(c) dense block.

2. Related Works
In general, CNN based SR models have shown improved interpolation performances

compared to the previous pixel-wise interpolation methods. Dong et al. [18] proposed a
super resolution convolutional neural network (SRCNN), which consists of three convo-
lution layers and trains an end-to-end mapping from a bicubic interpolated LR image to
a HR image. After the advent of SRCNN, Dong et al. [19] proposed another fast super-
resolution convolutional neural network (FSRCNN), which conducts multiple deconvo-
lution processes at the end of the network so that this model can utilize smaller filter sizes
and more convolution layers before the upscaling stage. In addition, it achieved a speedup
of more than 40 times with even better quality. Shi et al. [20] proposed an efficient sub-
pixel convolutional neural network (ESPCN) to train more accurate upsampling filters,
which was firstly deployed in the real-time SR applications. Note that both FSRCNN and
ESPCN were designed to assign deconvolution layers for upsampling at the end of the
network for reducing the network complexity. Kim et al. [21] designed a very deep con-
volutional network (VDSR) that is composed of 20 convolution layers with a global skip
connection. This method verified that contexts over large image regions are efficiently ex-
ploited by cascading small filters in a deeper network structure. SRResNet [22] was de-
signed with multiple residual blocks and a generative adversarial network (GAN) [23] to
enhance the detail of textures by using perceptual loss function. Tong et al. [24] proposed
a super-resolution using dense skip connections (SRDenseNet), which consists of 8 dense
blocks, and each dense block contains eight dense layers. As the feature maps of the pre-
vious convolution layer are concatenated with those of the current convolution layer
within a dense block, it requires heavy memory capacity to store the network parameters
and temporally generated feature maps between convolution layers. Residual dense net-
work (RDN) [25] is composed of multiple residual dense blocks, and each RDN includes

Figure 2. Examples of CNN-based network blocks. (a) Inception block; (b) residual block; and
(c) dense block.

2. Related Works

In general, CNN based SR models have shown improved interpolation performances
compared to the previous pixel-wise interpolation methods. Dong et al. [18] proposed a su-
per resolution convolutional neural network (SRCNN), which consists of three convolution
layers and trains an end-to-end mapping from a bicubic interpolated LR image to a HR
image. After the advent of SRCNN, Dong et al. [19] proposed another fast super-resolution
convolutional neural network (FSRCNN), which conducts multiple deconvolution pro-
cesses at the end of the network so that this model can utilize smaller filter sizes and
more convolution layers before the upscaling stage. In addition, it achieved a speedup of
more than 40 times with even better quality. Shi et al. [20] proposed an efficient sub-pixel
convolutional neural network (ESPCN) to train more accurate upsampling filters, which
was firstly deployed in the real-time SR applications. Note that both FSRCNN and ESPCN
were designed to assign deconvolution layers for upsampling at the end of the network
for reducing the network complexity. Kim et al. [21] designed a very deep convolutional
network (VDSR) that is composed of 20 convolution layers with a global skip connection.
This method verified that contexts over large image regions are efficiently exploited by
cascading small filters in a deeper network structure. SRResNet [22] was designed with
multiple residual blocks and a generative adversarial network (GAN) [23] to enhance the
detail of textures by using perceptual loss function. Tong et al. [24] proposed a super-
resolution using dense skip connections (SRDenseNet), which consists of 8 dense blocks,
and each dense block contains eight dense layers. As the feature maps of the previous
convolution layer are concatenated with those of the current convolution layer within

Sensors 2021, 21, 3351 4 of 17

a dense block, it requires heavy memory capacity to store the network parameters and
temporally generated feature maps between convolution layers. Residual dense network
(RDN) [25] is composed of multiple residual dense blocks, and each RDN includes a skip
connection within a dense block for the pursuit of more stable network training. As both
network parameters and memory capacity are increased in the proportion of the number
of dense blocks, Ahn et al. [26] proposed a cascading residual network (CARN) to reduce
the network complexity. The CARN architecture was designed to add multiple cascading
connections starting from each intermediate convolution layer to the others for the efficient
flow of feature maps and gradients. Lim et al. [27] proposed an enhanced deep residual
network for SR (EDSR), which consists of 32 residual blocks, and each residual block con-
tains two convolution layers. Especially, EDSR removed the batch normalization process in
the residual block for the speedup of network training.

Although aforementioned methods have demonstrated better SR performance, they
tend to be more complicated network architectures with respect to the enormous network
parameters, excessive convolution operations, and high memory usages. In order to reduce
the network complexity, several researches have been studied about more lightweight SR
models [28,29]. Li et al. [30] proposed multi-scale residual network (MSRN) using two
bypass networks with different kernel sizes. In this way, the feature maps between bypass
networks can be shared with each other so that image features are extracted at different
kernel sizes. Compared to that of EDSR, MSRN reduced the number of parameters up to
one-seventh, the SR performance was also substantially decreased, especially generating
four times scaled SR images. Recently, Kim et al. [31] proposed a lightweight SR method (SR-
ILLNN) that has 2 input layers consisting of the low-resolution image and the interpolated
image. In this paper, we propose a lightweight SR model, named multi-scale channel
dense network (MCDN) to provide better SR performance while reducing the network
complexity significantly compared to previous methods.

3. Proposed Method
3.1. Overall Architecture of MCDN

The proposed network aims at generating a HR image whose size is 4N × 4M where
N and M indicate the width and height of input image, respectively. In this paper, we
notate both feature maps and kernels as [W × H × C] where W × H and C are the spa-
tially 2-dimenstional (2D) size and the number of channels, respectively. As depicted
in Figure 3, MCDN is composed of 4 parts, which are input layer, multi-scale channel
extractor, upsampling layer, and output layer, respectively. Particularly, the multi-scale
channel extractor consists of three multi-scale channel dense blocks (MCDBs) with a skip
and dense connection per a MCDB. In general, the convolution operation (Hi) of i-th layer
calculates the feature maps (Fi) from the previous feature maps (Fi−1) as in Equation (1):

Fi = Hi(Fi−1), where Hi(Fi−1) = σ(Wi ⊗ Fi−1 + Bi), (1)

where Fi−1, Wi, Bi, σ, and ‘⊗’ denote as the previous feature maps, kernel weights, biases,
an activation function, and a weighted sum between the previous feature maps and kernel’s
weights, respectively. For all convolution layers, we set the same kernel size to 3 × 3 and
use zero padding to maintain the resolution of output feature maps. In Figure 3, F0 is
computed from the convolution operation of input layer (ILR) by using Equation (2).

F0 = HLR(ILR) = σ(WLR ⊗ ILR + BLR). (2)

After performing the convolution operation of input layer, F0 is fed into the multi-scale
channel extractor. The output of the multi-scale channel extractor (F3) is calculated by
cascading MCDB operations as in Equation (3):

F3 = HMCDB
3 (F2) = HMCDB

3

(
HMCDB

2 (F1)
)
= HMCDB

3

(
HMCDB

2

(
HMCDB

1 (F0)
))

, (3)

Sensors 2021, 21, 3351 5 of 17

where HMCDB
i (·) denotes convolution operation of the i-th MCDB. Finally, an output HR

image (IHR) is generated through the convolution operations of the upsampling layer and
the output layer. In the upsampling layer, we used 2 deconvolution layers with the 2 × 2
kernel size to expand the resolution by 4 times.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 18

Figure 3. Overall architecture of the proposed MCDN.

 =) = ⊗ +). (2)

After performing the convolution operation of input layer, is fed into the multi-
scale channel extractor. The output of the multi-scale channel extractor) is calculated
by cascading MCDB operations as in Equation (3): =) =) =) , (3)

where) denotes convolution operation of the -th MCDB. Finally, an output HR
image () is generated through the convolution operations of the upsampling layer and
the output layer. In the upsampling layer, we used 2 deconvolution layers with the 2×2
kernel size to expand the resolution by 4 times.

Figure 4 shows the detailed architecture about a MCDB. A MCDB has 5 dense blocks
with the different channel size, and each dense block contains 4 dense layers. In order to
describe the procedures of MCDB, we denote the -th dense layer of -th dense block as
a , in this paper. For the input feature maps (), -th dense block generates output
feature maps as in Equation (4), which combine the feature maps (,) with a skip
connection (). = , + , ℎ , = , , ⊗ , , , , , , + , . (4)

After concatenating the output feature maps from all dense blocks, they are fed into
a bottleneck layer in order to reduce the number of channel of the output feature maps. It
means that the bottleneck layer has a role of decreasing the number of kernel weights as
well as compressing the number of feature maps. The output of a MCDB is finally pro-
duced by the reconstruction layer with a global skip connection () as shown in Figure 4.

Figure 3. Overall architecture of the proposed MCDN.

Figure 4 shows the detailed architecture about a MCDB. A MCDB has 5 dense blocks
with the different channel size, and each dense block contains 4 dense layers. In order
to describe the procedures of MCDB, we denote the k-th dense layer of j-th dense block
as a Dj,k in this paper. For the input feature maps (Fi), j-th dense block generates output
feature maps Dj as in Equation (4), which combine the feature maps (Dj,4) with a skip
connection (Fi).

Dj = Dj,4 + Fi,where Dj,4 = Hj,4
(
σ
(
Wj,4 ⊗

[
Dj,3, Dj,2, Dj,1, Fi

])
+ Bj,4

)
. (4)

After concatenating the output feature maps from all dense blocks, they are fed into a
bottleneck layer in order to reduce the number of channel of the output feature maps. It
means that the bottleneck layer has a role of decreasing the number of kernel weights as
well as compressing the number of feature maps. The output of a MCDB is finally produced
by the reconstruction layer with a global skip connection (F0) as shown in Figure 4.

3.2. MCDN Training

In order to train the proposed network, we set hyper parameters as presented in
Table 1. We defined L1 loss [32] as the loss function and update the network parameters,
such as kernel weights and biases by using Adam optimizer [33]. The number of mini-batch
size, the number of epochs, and the learning rate were set to s 128, 50, and 10−3 to 10−5,
respectively. Among the various activation functions [34–36], parametric ReLU was used
as the activation functions in our network.

Table 1. Hyper parameters of the proposed MCDN.

Hyper Parameters Options

Loss function L1 loss

Optimizer Adam

Batch size 128

Num. of epochs 50

Learning rate 10−3 to 10−5

Initial weight Xavier

Activation function Parametric ReLU

Padding mode Zero padding

Sensors 2021, 21, 3351 6 of 17
Sensors 2021, 21, x FOR PEER REVIEW 6 of 18

Figure 4. The architecture of a MCDB.

3.2. MCDN Training
In order to train the proposed network, we set hyper parameters as presented in Ta-

ble 1. We defined L1 loss [32] as the loss function and update the network parameters,
such as kernel weights and biases by using Adam optimizer [33]. The number of mini-
batch size, the number of epochs, and the learning rate were set to s 128, 50, and 10−3 to
10−5, respectively. Among the various activation functions [34–36], parametric ReLU was
used as the activation functions in our network.

Figure 4. The architecture of a MCDB.

4. Experimental Results

As shown in Figure 5, we used DIV2K dataset [37] at the training stage. It has 2K
(1920 × 1080) spatial resolution and consists of 800 images. All training images with RGB
are converted into YUV color format and extracted only Y components with the patch size
of 100 × 100 without overlap. In order to obtain input LR images, the patches are further
down-sampled to 25 × 25 by bicubic interpolation. In order to evaluate the proposed
method, we used Set5 [38], Set14 [39], BSD100 [40], and Urban100 [41] of Figure 6 as the

Sensors 2021, 21, 3351 7 of 17

test datasets, which are commonly used in most SR studies [42–44]. In addition, Set5 was
also used as a validation dataset.

All experiments were conducted on an Intel Xeon Skylake (8cores@2.59GHz) having
128GB RAM and two NVIDIA Tesla V100 GPUs under the experimental environments of
Table 2. For the performance comparison of the proposed MCDN, we set bicubic interpola-
tion method as an anchor and SRCNN [18], EDSR [27], MSRN [30] and SR-ILLNN [31] are
used as the comparison methods in terms of SR accuracy and network complexity.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 18

Table 1. Hyper parameters of the proposed MCDN.

Hyper Parameters Options
Loss function L1 loss

Optimizer Adam
Batch size 128

Num. of epochs 50
Learning rate 10−3 to 10−5
Initial weight Xavier

Activation function Parametric ReLU
Padding mode Zero padding

4. Experimental Results
As shown in Figure 5, we used DIV2K dataset [37] at the training stage. It has 2K

(1920 × 1080) spatial resolution and consists of 800 images. All training images with RGB
are converted into YUV color format and extracted only Y components with the patch size
of 100 × 100 without overlap. In order to obtain input LR images, the patches are further
down-sampled to 25 × 25 by bicubic interpolation. In order to evaluate the proposed
method, we used Set5 [38], Set14 [39], BSD100 [40], and Urban100 [41] of Figure 6 as the
test datasets, which are commonly used in most SR studies [42–44]. In addition, Set5 was
also used as a validation dataset.

All experiments were conducted on an Intel Xeon Skylake (8cores@2.59GHz) having
128GB RAM and two NVIDIA Tesla V100 GPUs under the experimental environments of
Table 2. For the performance comparison of the proposed MCDN, we set bicubic interpo-
lation method as an anchor and SRCNN [18], EDSR [27], MSRN [30] and SR-ILLNN [31]
are used as the comparison methods in terms of SR accuracy and network complexity.

Figure 5. Training dataset (DIV2K [37]). Figure 5. Training dataset (DIV2K [37]).

Sensors 2021, 21, x FOR PEER REVIEW 8 of 18

Figure 6. Test datasets (Set5 [38], Set14 [39], BSD100 [40], and Urban100 [41]).

Table 2. Experimental environments.

Experimental environments Options
Linux version Ubuntu 16.04

Deep learning frameworks Pytorch 1.4.0
CUDA version 10.1
Input size (I) 25×25×1
Label size (I) 100×100×1

4.1. Performance Measurements
In terms of network complexity, we compared the proposed MCDN with SRCNN

[18], EDSR [27], MSRN [30] and SR-ILLNN [31], respectively. Table 3 shows the number
of network parameters and total memory size (MB). As shown in Table 3, MCDN reduces
the number of parameters and the total memory size by as low as 1.2% and 17.4% com-
pared to EDSR, respectively. Additionally MCDN marginally reduces the total memory
size by as low as 92.2% and 80.5%, respectively, compared to MSRN and SR-ILLNN with
lightweight network structures. Note that MCDN was able to reduce the number of pa-
rameters significantly because the parameters used in a MCDB are identically applied to
other MCDBs.

Table 3. The number of parameters and total memory (MB) size.

 Num. of Parameters Total Memory Size (MB)
SRCNN [18] 57K 14.98
EDSR [27] 43,061K 371.87
MSRN [30] 6,075K 70.56

SR-ILLNN [31] 439K 80.83
MCDN 531K 65.07

In terms of SR accuracy, Tables 4 and 5 show the results of PSNR and SSIM, respec-
tively. While the proposed MCDN can significantly reduce the network complexity com-
pared to EDSR, it has slightly high or similar PSNR performance on most test datasets. On
the other hand, MCDN can achieve the improved PSNR gains as high as 0.21dB and
0.16dB on average compared to MSRN and SR-ILLNN, respectively.

Figure 6. Test datasets (Set5 [38], Set14 [39], BSD100 [40], and Urban100 [41]).

Table 2. Experimental environments.

Experimental Environments Options

Linux version Ubuntu 16.04

Deep learning frameworks Pytorch 1.4.0

CUDA version 10.1

Input size (ILR) 25 × 25 × 1

Label size (IHR) 100 × 100 × 1

Sensors 2021, 21, 3351 8 of 17

4.1. Performance Measurements

In terms of network complexity, we compared the proposed MCDN with SRCNN [18],
EDSR [27], MSRN [30] and SR-ILLNN [31], respectively. Table 3 shows the number of
network parameters and total memory size (MB). As shown in Table 3, MCDN reduces the
number of parameters and the total memory size by as low as 1.2% and 17.4% compared
to EDSR, respectively. Additionally MCDN marginally reduces the total memory size
by as low as 92.2% and 80.5%, respectively, compared to MSRN and SR-ILLNN with
lightweight network structures. Note that MCDN was able to reduce the number of
parameters significantly because the parameters used in a MCDB are identically applied to
other MCDBs.

Table 3. The number of parameters and total memory (MB) size.

Num. of Parameters Total Memory Size (MB)

SRCNN [18] 57K 14.98

EDSR [27] 43,061K 371.87

MSRN [30] 6,075K 70.56

SR-ILLNN [31] 439K 80.83

MCDN 531K 65.07

In terms of SR accuracy, Tables 4 and 5 show the results of PSNR and SSIM, respectively.
While the proposed MCDN can significantly reduce the network complexity compared
to EDSR, it has slightly high or similar PSNR performance on most test datasets. On the
other hand, MCDN can achieve the improved PSNR gains as high as 0.21dB and 0.16dB on
average compared to MSRN and SR-ILLNN, respectively.

Table 4. Average PSNR (dB) on the test datasets. The best results of dataset are shown in bold.

Dataset Bicubic SRCNN [18] EDSR [27] MSRN [30] SR-ILLNN [31] MCDN

Set5 28.44 30.30 31.68 31.36 31.41 31.68

Set14 25.80 27.09 27.96 27.76 27.83 27.96

BSD100 25.99 26.86 27.42 27.36 27.33 27.43

Urban100 23.14 24.33 25.54 25.25 25.32 25.56

Average 24.73 25.80 26.70 26.49 26.54 26.70

Table 5. Average SSIM on the test datasets. The best results of datasets shown in bold.

Dataset Bicubic SRCNN [18] EDSR [27] MSRN [30] SR-ILLNN [31] MCDN

Set5 0.8112 0.8599 0.8893 0.8845 0.8848 0.8897

Set14 0.7033 0.7495 0.7748 0.7703 0.7709 0.7745

BSD100 0.6699 0.7112 0.7309 0.7281 0.7275 0.7305

Urban100 0.6589 0.7158 0.7698 0.7600 0.7583 0.7686

Average 0.6702 0.7192 0.7551 0.7489 0.7479 0.7543

Figure 7 shows the examples of visual comparisons between MCDN and the previous
methods including anchor on the test datasets. From the results, we verified that the
proposed MCDN can recover the structural information effectively and find more accurate
textures than other works.

Sensors 2021, 21, 3351 9 of 17
Sensors 2021, 21, x FOR PEER REVIEW 10 of 19

Figure 7. Cont.

Sensors 2021, 21, 3351 10 of 17Sensors 2021, 21, x FOR PEER REVIEW 11 of 19

Figure 7. Cont.

Sensors 2021, 21, 3351 11 of 17Sensors 2021, 21, x FOR PEER REVIEW 12 of 19

Figure 7. Visual comparisons on test dataset [38–41]. For each test image, the figures of the second row represent the zoom-
in for the area indicated by the red box.

4.2. Ablation Studies
In order to optimize the proposed network architectures, we conducted a variety of

verification tests on the validation dataset. In this paper, we denote the number of MCDB,
the number of the dense blocks per a MCDB, and the number of the dense layers per a
dense block as M, D, and L, respectively. Note that the more M, D, and L are deployed in
the proposed network, the more memory is required to store network parameters and the
feature maps. Therefore, it is important that the optimal M, D, and L components are de-
ployed in the proposed network to consider the trade-off between SR accuracy and net-
work complexity.

Firstly, we investigated what loss functions and activation functions were beneficial
to the proposed network. According to [45], L2 loss does not always guarantee better SR
performance in terms of PSNR and SSIM, although it is widely used to represent PSNR at
the network training stage. Therefore, we conducted PSNR comparisons to choose the
well matched loss function. Figure 8 and Table 6 indicate that L1 loss can be suitable to
the proposed network structure. In addition, leaky rectified linear unit (Leaky ReLU) [46]
and parametric ReLU can be replaced with ReLU to avoid the gradient vanishing effect in
the negative side. In order to avoid overfitting at the training stage, we evaluated L1 loss

Figure 7. Visual comparisons on test dataset [38–41]. For each test image, the figures of the second row represent the
zoom-in for the area indicated by the red box.

4.2. Ablation Studies

In order to optimize the proposed network architectures, we conducted a variety of
verification tests on the validation dataset. In this paper, we denote the number of MCDB,
the number of the dense blocks per a MCDB, and the number of the dense layers per a
dense block as M, D, and L, respectively. Note that the more M, D, and L are deployed
in the proposed network, the more memory is required to store network parameters and
the feature maps. Therefore, it is important that the optimal M, D, and L components
are deployed in the proposed network to consider the trade-off between SR accuracy and
network complexity.

Firstly, we investigated what loss functions and activation functions were beneficial
to the proposed network. According to [45], L2 loss does not always guarantee better SR
performance in terms of PSNR and SSIM, although it is widely used to represent PSNR
at the network training stage. Therefore, we conducted PSNR comparisons to choose the
well matched loss function. Figure 8 and Table 6 indicate that L1 loss can be suitable to
the proposed network structure. In addition, leaky rectified linear unit (Leaky ReLU) [46]
and parametric ReLU can be replaced with ReLU to avoid the gradient vanishing effect in
the negative side. In order to avoid overfitting at the training stage, we evaluated L1 loss
according to various epochs as shown in Figure 9a. After setting the number of epochs to

Sensors 2021, 21, 3351 12 of 17

50, we measured PSNR as a SR performance in the L1 loss functions. As demonstrated in
Figure 9b, we confirmed that parametric ReLU is superior to other activation functions on
the proposed MCDN.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 18

Figure 7. Visual comparisons on test dataset [38–41]. For each test image, the figures of the second row represent the zoom-
in for the area indicated by the red box.

4.2. Ablation Studies
In order to optimize the proposed network architectures, we conducted a variety of

verification tests on the validation dataset. In this paper, we denote the number of MCDB,
the number of the dense blocks per a MCDB, and the number of the dense layers per a
dense block as M, D, and L, respectively. Note that the more M, D, and L are deployed in
the proposed network, the more memory is required to store network parameters and the
feature maps. Therefore, it is important that the optimal M, D, and L components are de-
ployed in the proposed network to consider the trade-off between SR accuracy and net-
work complexity.

Firstly, we investigated what loss functions and activation functions were beneficial
to the proposed network. According to [45], L2 loss does not always guarantee better SR
performance in terms of PSNR and SSIM, although it is widely used to represent PSNR at
the network training stage. Therefore, we conducted PSNR comparisons to choose the
well matched loss function. Figure 8 and Table 6 indicate that L1 loss can be suitable to
the proposed network structure. In addition, leaky rectified linear unit (Leaky ReLU) [46]
and parametric ReLU can be replaced with ReLU to avoid the gradient vanishing effect in
the negative side. In order to avoid overfitting at the training stage, we evaluated L1 loss
according to various epochs as shown in Figure 9a. After setting the number of epochs to
50, we measured PSNR as a SR performance in the L1 loss functions. As demonstrated in
Figure 9b, we confirmed that parametric ReLU is superior to other activation functions on
the proposed MCDN.

Figure 8. Verification of loss functions.
Figure 8. Verification of loss functions.

Table 6. SR performances according to loss functions on test datasets.

Set5 Set14 BSD100 Urban100 Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

L1 31.68 0.8897 27.96 0.7745 27.43 0.7305 25.56 0.7686 26.70 0.7543

L2 31.61 0.8883 27.90 0.7733 27.40 0.7297 25.47 0.7653 26.65 0.7524

Sensors 2021, 21, x FOR PEER REVIEW 13 of 18

Table 6. SR performances according to loss functions on test datasets.

Set5 Set14 BSD100 Urban100 Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
L1 31.68 0.8897 27.96 0.7745 27.43 0.7305 25.56 0.7686 26.70 0.7543
L2 31.61 0.8883 27.90 0.7733 27.40 0.7297 25.47 0.7653 26.65 0.7524

Figure 9. Verification of activation functions. (a) L1 loss per epoch. (b) PSNR per epoch.

Secondly, we have investigated the optimal number of M, after fixing the D and L to
5 and 4, respectively. We evaluated L1 loss according to the number of epochs as shown
in Figure 10a. After setting the number of epochs to 50, we measured PSNR to identify SR
performance according to the various M, and Figure 10b showed that the optimal M
should be set to 3. Through the evaluations of Figures 11 and 12 and Tables 7 and 8, the
optimal number of D and L were set to 5 and 4 in the proposed MCDN, respectively.
Consequently, the proposed MCDN can be designed to consider the trade-off between the
SR performance and the network complexity as measured in Tables 7–9.

Figure 10. Verification of the number of MCDB (M) in terms of SR performance. (a) L1 loss per epoch. (b) PSNR per epoch.

Figure 9. Verification of activation functions. (a) L1 loss per epoch. (b) PSNR per epoch.

Secondly, we have investigated the optimal number of M, after fixing the D and L to 5
and 4, respectively. We evaluated L1 loss according to the number of epochs as shown in
Figure 10a. After setting the number of epochs to 50, we measured PSNR to identify SR
performance according to the various M, and Figure 10b showed that the optimal M should
be set to 3. Through the evaluations of Figures 11 and 12 and Tables 7 and 8, the optimal
number of D and L were set to 5 and 4 in the proposed MCDN, respectively. Consequently,
the proposed MCDN can be designed to consider the trade-off between the SR performance
and the network complexity as measured in Tables 7–9.

Sensors 2021, 21, 3351 13 of 17

Sensors 2021, 21, x FOR PEER REVIEW 13 of 18

Table 6. SR performances according to loss functions on test datasets.

Set5 Set14 BSD100 Urban100 Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
L1 31.68 0.8897 27.96 0.7745 27.43 0.7305 25.56 0.7686 26.70 0.7543
L2 31.61 0.8883 27.90 0.7733 27.40 0.7297 25.47 0.7653 26.65 0.7524

Figure 9. Verification of activation functions. (a) L1 loss per epoch. (b) PSNR per epoch.

Secondly, we have investigated the optimal number of M, after fixing the D and L to
5 and 4, respectively. We evaluated L1 loss according to the number of epochs as shown
in Figure 10a. After setting the number of epochs to 50, we measured PSNR to identify SR
performance according to the various M, and Figure 10b showed that the optimal M
should be set to 3. Through the evaluations of Figures 11 and 12 and Tables 7 and 8, the
optimal number of D and L were set to 5 and 4 in the proposed MCDN, respectively.
Consequently, the proposed MCDN can be designed to consider the trade-off between the
SR performance and the network complexity as measured in Tables 7–9.

Figure 10. Verification of the number of MCDB (M) in terms of SR performance. (a) L1 loss per epoch. (b) PSNR per epoch.

Figure 10. Verification of the number of MCDB (M) in terms of SR performance. (a) L1 loss per epoch. (b) PSNR per epoch.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 18

Figure 11. Verification of the number of dense block (D) per a MCDB in terms of SR performance. (a) L1 loss per epoch.
(b) PSNR per epoch.

Figure 12. Verification of the number of dense layer (L) per a dense block in terms of SR performance. (a) L1 loss per epoch.
(b) PSNR per epoch.

Table 7. Verification of the number of dense block (D) per a MCDB in terms of network complexity.

 Num. of Parameters Total Memory Size (MB)
M3_D1_L5 125K 25.57
M3_D2_L5 185K 34.62
M3_D3_L5 267K 44.93
M3_D4_L5 395K 57.85
M3_D5_L5 639K 76.21
M3_D6_L5 1146K 106.39
M3_D7_L5 2713K 164.02

Table 8. Verification of the number of dense layer (L) per a dense block in terms of network com-
plexity.

 Num. of Parameters Total Memory Size (MB)
M3_D5_L1 280K 37.82
M3_D5_L2 351K 45.87
M3_D5_L3 435K 54.96
M3_D5_L4 531K 65.07
M3_D5_L5 639K 76.21
M3_D5_L6 760K 88.37
M3_D5_L7 893K 101.57

Figure 11. Verification of the number of dense block (D) per a MCDB in terms of SR performance. (a) L1 loss per epoch.
(b) PSNR per epoch.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 18

Figure 11. Verification of the number of dense block (D) per a MCDB in terms of SR performance. (a) L1 loss per epoch.
(b) PSNR per epoch.

Figure 12. Verification of the number of dense layer (L) per a dense block in terms of SR performance. (a) L1 loss per epoch.
(b) PSNR per epoch.

Table 7. Verification of the number of dense block (D) per a MCDB in terms of network complexity.

 Num. of Parameters Total Memory Size (MB)
M3_D1_L5 125K 25.57
M3_D2_L5 185K 34.62
M3_D3_L5 267K 44.93
M3_D4_L5 395K 57.85
M3_D5_L5 639K 76.21
M3_D6_L5 1146K 106.39
M3_D7_L5 2713K 164.02

Table 8. Verification of the number of dense layer (L) per a dense block in terms of network com-
plexity.

 Num. of Parameters Total Memory Size (MB)
M3_D5_L1 280K 37.82
M3_D5_L2 351K 45.87
M3_D5_L3 435K 54.96
M3_D5_L4 531K 65.07
M3_D5_L5 639K 76.21
M3_D5_L6 760K 88.37
M3_D5_L7 893K 101.57

Figure 12. Verification of the number of dense layer (L) per a dense block in terms of SR performance. (a) L1 loss per epoch.
(b) PSNR per epoch.

Table 7. Verification of the number of dense block (D) per a MCDB in terms of network complexity.

Num. of Parameters Total Memory Size (MB)

M3_D1_L5 125K 25.57

M3_D2_L5 185K 34.62

M3_D3_L5 267K 44.93

M3_D4_L5 395K 57.85

M3_D5_L5 639K 76.21

M3_D6_L5 1146K 106.39

M3_D7_L5 2713K 164.02

Sensors 2021, 21, 3351 14 of 17

Table 8. Verification of the number of dense layer (L) per a dense block in terms of network complexity.

Num. of Parameters Total Memory Size (MB)

M3_D5_L1 280K 37.82

M3_D5_L2 351K 45.87

M3_D5_L3 435K 54.96

M3_D5_L4 531K 65.07

M3_D5_L5 639K 76.21

M3_D5_L6 760K 88.37

M3_D5_L7 893K 101.57

Table 9. SR Performances on test datasets.

Set5 Set14 BSD100 Urban100 Average

Model PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

M1_D5_L5 31.50 0.8866 27.83 0.7714 27.34 0.7279 25.34 0.760. 26.55 0.7491

M2_D5_L5 31.58 0.8882 27.92 0.7739 27.40 0.7298 25.50 0.7665 26.66 0.7530

M3_D5_L5 31.68 0.8895 27.98 0.7747 27.43 0.7304 25.56 0.7692 26.71 0.7546

M4_D5_L5 31.66 0.8896 28.01 0.7751 27.43 0.7308 25.59 0.7708 26.73 0.7555

M5_D5_L5 31.73 0.8903 28.03 0.7755 27.44 0.7310 25.65 0.7725 26.76 0.7564

M6_D5_L5 31.70 0.8901 28.05 0.7758 27.45 0.7313 25.66 0.7729 26.77 0.7568

M7_D5_L5 31.70 0.8899 28.05 0.7761 27.44 0.7313 25.65 0.7730 26.76 0.7568

M3_D1_L5 31.40 0.8853 27.80 0.7707 27.31 0.7270 25.25 0.7576 26.50 0.7474

M3_D2_L5 31.53 0.8874 27.88 0.7724 27.36 0.7285 25.36 0.7616 26.58 0.7500

M3_D3_L5 31.58 0.8878 27.90 0.7731 27.39 0.7292 25.41 0.7638 26.61 0.7514

M3_D4_L5 31.60 0.8883 27.96 0.7742 27.40 0.7299 25.50 0.7665 26.66 0.7531

M3_D5_L5 31.68 0.8895 27.98 0.7747 27.43 0.7304 25.56 0.7692 26.71 0.7546

M3_D6_L5 31.67 0.8894 27.99 0.7749 27.43 0.7308 25.59 0.7708 26.72 0.7555

M3_D7_L5 31.67 0.8897 27.95 0.7748 27.41 0.7307 25.58 0.7711 26.71 0.7556

M3_D5_L1 31.53 0.8871 27.86 0.7722 27.35 0.7283 25.37 0.7615 26.58 0.7499

M3_D5_L2 31.59 0.8880 27.90 0.7732 27.38 0.7292 25.43 0.7642 26.62 0.7516

M3_D5_L3 31.65 0.8891 27.93 0.7739 27.41 0.7299 25.50 0.7667 26.67 0.7531

M3_D5_L4 31.68 0.8897 27.96 0.7745 27.43 0.7305 25.56 0.7686 26.70 0.7543

M3_D5_L5 31.68 0.8895 27.98 0.7747 27.43 0.7304 25.56 0.7692 26.71 0.7546

M3_D5_L6 31.68 0.8897 27.99 0.7750 27.43 0.7309 25.60 0.7706 26.73 0.7555

M3_D5_L7 31.66 0.8894 27.99 0.7753 27.43 0.7309 25.61 0.7711 26.73 0.7557

Finally, we verified the effectiveness both of skip and dense connection. The more
dense connections are deployed in the between convolution layers, the more network
parameters are required to compute the convolution operations. According to the results
of tool-off tests on the proposed MCDN as measured in Table 10, we confirmed that both
skip and dense connection have an effect on SR performance. In addition, Table 11 shows
the network complexity and the inference speed according to the deployment of skip and
dense connection.

Sensors 2021, 21, 3351 15 of 17

Table 10. SR performances according to tool-off tests.

Skip
Connection

Dense
Connection

Set5 Set14 BSD100 Urban100 Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Disable Disable 26.42 0.7362 24.34 0.6297 24.78 0.5985 21.95 0.5823 23.50 0.5963

Disable Enable 31.37 0.8845 27.78 0.7698 27.29 0.7264 25.22 0.7557 26.47 0.7462

Enable Disable 31.59 0.8879 27.90 0.7731 27.39 0.7291 25.42 0.7643 26.62 0.7516

Enable Enable 31.68 0.8897 27.96 0.7745 27.43 0.7305 25.56 0.7686 26.70 0.7543

Table 11. Network complexity and inference speed on BSD100 according to tool-off tests.

Skip Connection Dense Connection Num. of Parameters Total Memory Size (MB) Inference Speed (s)

Disable Disable 167K 40.02 24.09

Disable Enable 531K 65.07 46.59

Enable Disable 434K 40.02 26.37

Enable Enable 531K 65.07 47.20

5. Conclusions

In this paper, we proposed CNN based a multi-scale channel dense network (MCDN).
The proposed MCDN aims at generating a HR image whose size is 4N × 4M given an
input image N × M. It is composed of four parts, which are input layer, multi-scale channel
extractor, upsampling layer, and output layer, respectively. In addition, the multi-scale
channel extractor consists of three multi-scale channel dense blocks (MCDBs), where each
MCDB has five dense blocks with the different channel size, and each dense block contains
four dense layers. In order to design the proposed network, we extracted training images
from the DIV2K dataset and investigated the trade-off between the quality enhancement
and network complexity. We conducted various ablation works to find the optimal network
structure. Consequently, the proposed MCDN reduced the number of parameters and
the total memory size by as low as 1.2% and 17.4%, respectively while it accomplished
slightly high or similar PSNR performance on most test datasets compared to EDSR. In
addition, MCDN marginally reduces the total memory size by as low as 80.5% and 92.2%,
respectively, compared to MSRN and SR-ILLNN with lightweight network structures. In
terms of SR performances, MCDN can achieve the improved PSNR gains as high as 0.21 dB
and 0.16 dB on average compared to MSRN and SR-ILLNN, respectively.

Author Contributions: Conceptualization, Y.L. and D.J.; methodology, Y.L. and D.J.; software, Y.L.;
validation, D.J., B.-G.K. and H.L.; formal analysis, Y.L. and D.J.; investigation, Y.L.; resources, D.J.;
data curation, Y.L.; writing—original draft preparation, Y.L.; writing—review and editing, D.J.;
visualization, Y.L.; supervision, D.J.; project administration, D.J.; funding acquisition, H.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work is supported by the Korea Agency for Infrastructure Technology
Advancement (KAIA) grant funded by the Ministry of Science and ICT (Grant 21PQWO-B153349-03).

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 3351 16 of 17

References
1. Chen, L.; Ding, Q.; Zou, Q.; Chen, Z.; Li, L. DenseLightNet: A Light-Weight Vehicle Detection Network for Autonomous Driving.

IEEE Trans. Ind. Electron. 2020, 12, 10600–10609. [CrossRef]
2. Wells, J.; Chatterjee, A. Content-Aware Low-Complexity Object Detection for Tracking Using Adaptive Compressed Sensing.

IEEE J. Emerg. Sel. Top. Power Electron. 2018, 8, 578–590. [CrossRef]
3. Gong, M.; Shu, Y. Real-Time Detection and Motion Recognition of Human Moving Objects Based on Deep Learning and

Multi-Scale Feature Fusion in Video. IEEE Access 2020, 8, 25811–25822. [CrossRef]
4. Oliveira, B.; Ferreira, F.; Martins, C. Fast and Lightweight Object Detection Network: Detection and Recognition on Resource

Constrained Devices. IEEE Access 2017, 6, 8714–8724. [CrossRef]
5. Zhang, J.; Zhu, H.; Wang, P.; Ling, A.X. ATT Squeeze U-Net: A Lightweight Network for Forest Fire Detection and Recognition.

IEEE Access 2020, 9, 10858–10870. [CrossRef]
6. Chen, G.; Wang, H.; Chen, K.; Li, Z.; Song, Z.; Liu, Y.; Chen, W.; Knoll, A. A Survey of the Four Pillars for Small Object Detection:

Multiscale Representation, Contextual Information, Super-Resolution, and Region Proposal. IEEE Trans. Syst. Man Cybern.
Syst. 2020. [CrossRef]

7. Peled, S.; Yeshurun, Y. Superresolution in MRI: Application to Human White Matter Fiber Visualization by Diffusion Tensor
Imaging. Magn. Reason. Med. 2001, 45, 29–35. [CrossRef]

8. Shi, W.; Caballero, J.; Ledig, C.; Zhang, X.; Bai, W.; Bhatia, K.; Marvao, A.; Dawes, T.; Regan, D.; Rueckert, D. Cardiac Image
Super-Resolution with Global Correspondence Using Multi-Atlas PatchMatch. Med. Image Comput. Comput. Assist. Interv. 2013,
8151, 9–16.

9. Thornton, M.; Atkinson, P.; Holland, D. Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor
imagery using super-resolution pixel-swapping. Int. J. Remote Sens. 2006, 27, 473–491. [CrossRef]

10. Zhang, L.; Zhang, H.; Shen, H.; Li, P. A super-resolution reconstruction algorithm for surveillance images. Signal Process. 2010, 90,
848–859. [CrossRef]

11. Yang, C.; Ma, C.; Yang, M. Single-image super-resolution: A benchmark. In Proceedings of the European Conference on Computer
Vision, Zurich, Switzerland, 6–12 September 2014; pp. 372–386.

12. Lecun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten
Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

13. Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. International Conference on Pattern Recognition. In Proceedings of the
20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369.

14. Wang, Z.; Bovik, A.C.; Sheikh, H.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef]

15. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Conference on Computer
Vision and Pattern Recognition, Las Vegas, NY, USA, 27–30 June 2016; pp. 770–778.

17. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K. Densely connected convolutional networks. In Proceedings of the
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

18. Dong, C.; Loy, C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern. Anal. Mach.
Intell. 2015, 38, 295–307. [CrossRef] [PubMed]

19. Dong, C.; Loy, C.; Tang, X. Accelerating the Super-Resolution Convolutional Neural Network. In Proceedings of the European
Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 391–407.

20. Shi, W.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video
Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

21. Kim, J.; Lee, J.; Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the Conference
on Computer Vision and Pattern Recognition, Las Vegas, NY, USA, 27–30 June 2016; pp. 1646–1654.

22. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-
realistic single image super-resolution using a generative adversarial network. In Proceedings of the Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690.

23. Goodfellow, I.; Abadie, J.; Mirza, M.; Xu, B.; Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. Adv.
Neural Inf. Process. Syst 2014, 2, 2672–2680.

24. Tong, T.; Li, G.; Liu, X.; Gao, Q. Image super-resolution using dense skip connections. In Proceedings of the Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4799–4807.

25. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2472–2481.

26. Ahn, N.; Kang, B.; Sohn, K. Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network. In Proceedings
of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 252–268.

http://doi.org/10.1109/TIE.2019.2962413
http://doi.org/10.1109/JETCAS.2018.2859218
http://doi.org/10.1109/ACCESS.2020.2971283
http://doi.org/10.1109/ACCESS.2018.2801813
http://doi.org/10.1109/ACCESS.2021.3050628
http://doi.org/10.1109/TSMC.2020.3005231
http://doi.org/10.1002/1522-2594(200101)45:1<29::AID-MRM1005>3.0.CO;2-Z
http://doi.org/10.1080/01431160500207088
http://doi.org/10.1016/j.sigpro.2009.09.002
http://doi.org/10.1162/neco.1989.1.4.541
http://doi.org/10.1109/TIP.2003.819861
http://doi.org/10.1109/TPAMI.2015.2439281
http://www.ncbi.nlm.nih.gov/pubmed/26761735

Sensors 2021, 21, 3351 17 of 17

27. Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of
the Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144.

28. Lai, W.; Huang, J.; Ahuja, J.; Yang, M. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. In Proceedings
of the Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 624–632.

29. Liu, Y.; Zhang, X.; Wang, S.; Ma, S.; Gao, W. Progressive Multi-Scale Residual Network for Single Image Super-Resolution. arXiv
2020, arXiv:2007.09552.

30. Li, J.; Fang, F.; Mei, K.; Zhang, G. Multi-scale Residual Network for Image Super-Resolution. In Proceedings of the European
Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 517–532.

31. Kim, S.; Jun, D.; Kim, B.; Lee, H.; Rhee, E. Single Image Super-Resolution Method Using CNN-Based Lightweight Neural
Networks. Appl. Sci. 2021, 11, 1092. [CrossRef]

32. Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss Functions for Image Restoration with Neural Networks. IEEE Trans. Comput. Imaging
2017, 3, 47–57. [CrossRef]

33. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
34. Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the Fourteenth International

Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323.
35. Redford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.

arXiv 2015, arXiv:1511.06434.
36. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 1026–1034.
37. Agustsson, E.; Timofte, R. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. In Proceedings of the

Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017.
38. Bavilacqua, M.; Roumy, A.; Guillemot, C.; Morel, M.L. Low-complexity single-image super-resolution based on nonnegative

neighbor embedding. In Proceedings of the 23rd British Machine Vision Conference (BMVC), Surrey, UK, 3–7 September 2012;
pp. 1–10.

39. Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In Proceedings of the International
Conference on Curves and Sufaces, Avignon, France, 24–30 June 2010; pp. 711–730.

40. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating
segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth IEEE International Conference on
Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; pp. 416–423.

41. Huang, J.; Singh, A.; Ahuja, N. Single Image Super-resolution from Transformed Self-Exemplars. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5197–5206.

42. Wang, Z.; Chen, J.; Hoi, S. Deep Learning for Image Super-resolution: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020.
[CrossRef] [PubMed]

43. Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.H.; Liao, Q. Deep Learning for Single Image Super-Resolution: A Brief Review.
IEEE Trans. Multimed. 2019, 21, 3106–3121. [CrossRef]

44. Li, K.; Yang, S.; Dong, R.; Wang, X.; Huang, J. Survey of single image super-resolution reconstruction. IET Image Process. 2020, 14,
2273–2290. [CrossRef]

45. Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for neural networks for image processing. arXiv 2015, arXiv:1511.08861.
46. Mass, A.; Hannun, A.; Ng, A. Rectifier Nonlinearities Improve Neural Network Acoustic Models. In Proceedings of the 30th

International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 30, pp. 1–6.

http://doi.org/10.3390/app11031092
http://doi.org/10.1109/TCI.2016.2644865
http://doi.org/10.1109/TPAMI.2020.2982166
http://www.ncbi.nlm.nih.gov/pubmed/32217470
http://doi.org/10.1109/TMM.2019.2919431
http://doi.org/10.1049/iet-ipr.2019.1438

	Introduction
	Related Works
	Proposed Method
	Overall Architecture of MCDN
	MCDN Training

	Experimental Results
	Performance Measurements
	Ablation Studies

	Conclusions
	References

