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Abstract: There are many studies that seek to enhance a low resolution image to a high resolution
image in the area of super-resolution. As deep learning technologies have recently shown impressive
results on the image interpolation and restoration field, recent studies are focusing on convolutional
neural network (CNN)-based super-resolution schemes to surpass the conventional pixel-wise
interpolation methods. In this paper, we propose two lightweight neural networks with a hybrid
residual and dense connection structure to improve the super-resolution performance. In order to
design the proposed networks, we extracted training images from the DIVerse 2K (DIV2K) image
dataset and investigated the trade-off between the quality enhancement performance and network
complexity under the proposed methods. The experimental results show that the proposed methods
can significantly reduce both the inference speed and the memory required to store parameters
and intermediate feature maps, while maintaining similar image quality compared to the previous
methods.

Keywords: deep learning; convolutional neural networks; lightweight neural network; single image
super-resolution; image enhancement; image restoration; residual dense networks

1. Introduction

While the resolution of images has been rapidly increasing in recent years with the
development of high-performance cameras, advanced image compression, and display
panels, the demands to generate high resolution images from pre-existing low-resolution
images are also increasing for rendering on high resolution displays. In the field of
computer vision, single image super-resolution (SISR) methods aim at recovering a high-
resolution image from a single low-resolution image. Since the low-resolution images
cannot represent the high-frequency information properly, most super-resolution (SR)
methods have focused on restoring high-frequency components. For this reason, SR
methods are used to restore the high-frequency components from quantized images at the
image and video post-processing stage [1–3].

Deep learning schemes such as convolutional neural network (CNN) and multi-layer
perceptron (MLP) are a branch of machine learning which aims to learn the correlations
between input and output data. In general, the output in the process of the convolution
operations is one pixel, which is a weighted sum between an input image block and a filter,
so an output image represents the spatial correlation of input image corresponding to the
filters used. As CNN-based deep learning technologies have recently shown impressive
results in the area of SISR, various CNN-based SR methods have been developed that
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surpass the conventional SR methods, such as image statistical methods and patch- based
methods [4,5]. In order to improve the quality of low-resolution images, CNN-based SR
networks tend to deploy more complicated schemes, which have deeper and denser CNN
structures and cause increases in the computational complexity like the required memory
to store network parameters, the number of convolution operations, and the inference
speed. We propose two SR-based lightweight neural networks (LNNs) with hybrid residual
and dense networks, which are the “inter-layered SR-LNN” and “simplified SR-LNN”,
respectively, which we denote in this paper as “SR-ILLNN” and “SR-SLNN”, respectively.
The proposed methods were designed to produce similar image quality while reducing the
number of networks parameters, compared to previous methods. Those SR technologies
can be applied to the pre-processing stages of face and gesture recognition [6–8].

The remainder of this paper is organized as follows: In Section 2, we review previous
studies related to CNN-based SISR methods. In Section 3, we describe the frameworks
of the proposed two SR-LNNs for SISR. Finally, experimental results and conclusions are
given in Sections 4 and 5, respectively.

2. Related Works

Deep learning-based SR methods have shown high potential in the field of image inter-
polation and restoration, compared to the conventional pixel-wise interpolation algorithms.
Dong et al. proposed a three-layer CNN structure called super-resolution convolutional
neural network (SR-CNN) [9], which learns an end-to-end mapping from a bi-cubic inter-
polated low-resolution image to a high-resolution image. Since the advent of SR-CNN,
a variety of CNN networks with deeper and denser network structure [10–13] have been
developed to improve the accuracy of SR.

In particular, He et al. proposed a ResNet [11] for image classification. Its key idea is
to learn residuals through global or local skip connection. It notes that ResNet can provide
a high-speed training process and prevent the gradient vanishing effects. In addition to
ResNet, Huang et al. proposed densely connected convolutional networks (DenseNet) [12]
to combine hierarchical feature maps available along the network depth for more flexible
and richer feature representations. Dong et al. proposed an artifacts reduction CNN
(AR-CNN) [14], which effectively reduces the various compression artifacts such as block
artifacts and ringing artifacts on Joint Photographic Experts Group (JPEG) compression
images.

Kim et al. proposed a super-resolution scheme with very deep convolutional networks
(VDSR) [15], which is connected with 20 convolutional layers and a global skip connection.
In particular, the importance of receptive field size and the residual learning was verified by
VDSR. Leding et al. proposed a SR-ResNet [16], which was designed with multiple residual
blocks and generative adversarial network (GAN) for improving visually subjective quality.
Here, a residual block is composed of multiple convolution layers, a batch normalization,
and a local skip connection. Lim et al. exploited enhanced deep super-resolution (EDSR)
and multi-scale deep super-resolution (MDSR) [17]. In particular, as these networks have
been modified in a way of removing the batch normalization, it can reduce graphics
processing unit (GPU) memory demand by about 40% compared with SR-ResNet.

Tong et al. proposed an image super-resolution using dense skip connections (SR-
DenseNet) [18] as shown in Figure 1. Because SR-DenseNet consists of eight dense blocks
and each dense block contains eight dense layers, this network has a total of 67 convolution
layers and two deconvolution layers. Because the feature maps of the previous convolu-
tional layer are concatenated with those of the current convolutional layer within a dense
block, total number of the feature map from the last dense block reaches up to 1040 and it
requires more memory capacity to store the massive network parameters and intermediate
feature maps.

On the other hand, the aforementioned deep learning-based SR methods are also
applied to compress raw video data. For example, Joint Video Experts Team (JVET) formed
the Adhoc Group (AhG) for deep neural networks based video coding (DNNVC) [19]
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in 2020, which aims at exploring the coding efficiency using the deep learning schemes.
Several studies [20–22] have shown better coding performance than the-state-of-the-art
video coding technologies.
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3. Proposed Method

Although more complicated deep neural network models have demonstrated better
SR performance than conventional methods, it is difficult to implement them on low-
complexity, low-power, and low-memory devices, due to the massive network parameters
and convolution operations of deeper and denser networks. In case of SR-DenseNet, it is
difficult to implement this model to the applications for real-time processing even though
its SR performance is superior to that of other neural network models. To address this issue,
we considered two lightweight network structures at the expense of unnoticeable quality
degradation, compared to SR-DenseNet. The purpose of the proposed two lightweight
neural networks for SISR is to quadruple the input images the same as SR-DenseNet.
Firstly, SR-ILLNN learns the feature maps, which are derived from both low-resolution
and interpolated low-resolution images. Secondly, SR-SLNN is designed to use only low-
resolution feature maps of the SR-ILLNN for a few more reducing the network complexity.

3.1. Architecture of SR-ILLNN

Figure 2 shows the proposed SR-ILLNN, which consists of two inputs, 15 convolution
layers and two deconvolution layers. The two inputs are denoted as a low-resolution (LR)
image XLR and a bi-cubic interpolated low-resolution (ILR) image XILR where N and M
denote the width and height of the input image XLR, respectively. The reason why we
deployed the two inputs is to compensate the dense LR features of SR-DenseNet with
high-resolution (HR) features of XILR, while reducing the number of convolutional layers
as many as possible. As depicted in Figure 2, it consists of three parts, which are LR feature
layers from convolutional layer 1 (Conv1) to Conv8, HR feature layers from Conv9 to
Conv12, and shared feature layers from Conv13 to Conv15.

Each convolution is operated as in (1), where Wi, Bi, and ‘⊗’ represent the kernels,
biases, and convolution operation of the ith layer, respectively. In this paper, we notate a
kernel as [Fw × Fh × Fc], where Fw × Fh and Fc are the spatial size of filter and the number
of channels, respectively:

Fi(XLR) = max(0, Wi ⊗ Fi−1(XLR) + Bi), (1)
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In the process of convolution operation, we applied rectified linear unit (ReLU,
max(0, x)) on the filter responses and used a partial convolution-based padding scheme [23]
to avoid the loss of boundary information. The padding sizes is defined so that the feature
maps between different convolution layers can have the same spatial resolution as follows:

Padding Size = Floor(Fw/2), (2)

where Floor(x) means the rounding down operation. Note that the convolutional layers
of Conv1–4 and Conv9–12 of Figure 2 are conducted to generate output feature maps
with dense connections for more flexible and richer feature representations, which are
concatenated the feature maps of the previous layer with those of the current layer. So,
convolution operations with dense connections are calculated as in (3):

Fi(XLR) = max(0, Wi ⊗ [F1(XLR), . . . , Fi−1(XLR)] + Bi),
Fj(XILR) = max

(
0, Wj ⊗

[
F9(XILR), . . . , Fj−1(XILR)

]
+ Bj

) (3)

A ResNet scheme [11] with skip connections can provide a high-speed training and
prevent the gradient vanishing effect, so we deployed a local and a global skip connection
to train the residual at the output feature maps of Conv4 and Conv15. Because the output
feature maps F4 and XLR have the different number of channels in local skip connection,
XLR is copied up to the number of channels of F4 before operating Conv5.

It should be noted that the number of feature maps has a strong effect on the inference
speed. Therefore, the proposed SR-LNNs is designed to reduce the number of feature maps
from 192 to 32, before deconvolution operation. Then, Deconv1 and Deconv2 are operated
for image up-sampling as follows:

Fdeconv(XLR) = max(0, Wdeconv � Fi−1(XLR) + Bdeconv), (4)

where Wdeconv, Bdeconv are the kernels and biases of the deconvolution layer, respectively,
and the symbol ‘�’ denotes the deconvolution operation. As each deconvolution layer
has different kernel weights and biases, it is superior to the conventional SR methods like
pixel-wise interpolation methods.

In the stage of the shared feature layers, the output feature maps of the LR feature
layers F8(XLR) are concatenated with those of HR feature layers F12(XILR). Then, the
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concatenated feature maps [F8(XLR), F12(XILR)] are inputted to the shared feature layers
as in (5):

F13(X) = max(0, W13 ⊗ [F8(XLR), F12(XILR)] + B13) (5)

Note that the activation function (ReLU) is not applied to the last feature map when
the convolution operation is conducted in Conv15. Table 1 presents the structural analysis
of the network parameters in SR-ILLNN.

Table 1. Analysis of network parameters in SR-ILLNN.

Layer
Name

Kernel
Size

Num. of
Kernels

Padding
Size

Output Feature Map
(W × H × C)

Num. of
Parameters

Conv1 3 × 3 × 1 64 1 N ×M × 64 640
Conv2 3 × 3 × 64 64 1 N ×M × 64 36,928
Conv3 3 × 3 × 128 64 1 N ×M × 64 73,792
Conv4 3 × 3 × 192 64 1 N ×M × 64 110,656
Conv5 1 × 1 × 64 32 0 N ×M × 32 2080

Deconv1 4 × 4 × 32 32 1 2N × 2M × 32 16,416
Conv6, 7 3 × 3 × 32 32 1 2N × 2M × 32 9248
Deconv2 4 × 4 × 32 32 1 4N × 4M × 32 16,416
Conv8 3 × 3 × 32 16 1 4N × 4M × 16 4624
Conv9 5 × 5 × 1 64 2 4N × 4M × 64 1664
Conv10 3 × 3 × 64 64 1 4N × 4M × 64 36,928
Conv11 3 × 3 × 128 64 1 4N × 4M × 64 73,792
Conv12 3 × 3 × 192 16 1 4N × 4M × 16 27,664

Conv13, 14 3 × 3 × 32 32 1 4N × 4M × 32 9248
Conv15 5 × 5 × 32 1 2 4N × 4M × 1 801

3.2. Architecture of SR-SLNN

Because SR-ILLNN has hierarchical network structure due to the two inputs, we
propose a SR-SLNN to reduce the network complexity of SR-ILLNN. As depicted in
Figure 3, the SR-SLNN was modified to remove the HR feature layers and the shared feature
layers of SR-ILLNN. In addition, it has seven convolution layers and two deconvolution
layers, where two convolution layers between deconvolution layers are also removed.
Table 2 presents the structural analysis of network parameters in SR-SLNN.
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Table 2. Analysis of network parameters in SR-SLNN.

Layer
Name

Kernel
Size

Num. of
Kernels

Padding
Size

Output Feature Map
(W × H × C)

Num. of
Parameters

Conv1 5 × 5 × 1 64 2 N ×M × 64 1664
Conv2 3 × 3 × 64 64 1 N ×M × 64 36,928
Conv3 3 × 3 × 128 64 1 N ×M × 64 73,792
Conv4 3 × 3 × 192 64 1 N ×M × 64 110,656
Conv5 1 × 1 × 64 32 0 N ×M × 32 2080

Deconv1 4 × 4 × 32 32 1 2N × 2M × 32 16,416
Deconv2 4 × 4 × 32 32 1 4N × 4M × 32 16,416
Conv6 3 × 3 × 32 16 1 4N × 4M × 16 4624
Conv7 5 × 5 × 16 1 2 4N × 4M × 1 401

3.3. Loss Function and Hyper-Parameters

We set hyper-parameters as presented in Table 3. In order to find the optimal parameter
θ = {Filter weights, Biases}, we defined mean square error (MSE) as the loss function (6),
where XHR, Y, and N are the final output image of SR-LNN, the corresponding label image,
and the batch size. Here, L(θ) is minimized by Adam optimizer using the back-propagation.
In particular, the number of epochs were set to 50 according to the Peak Signal-to-Nosie
Ratio (PSNR) variations of the validation set (Set5) and the learning rates were empirically
assigned to the intervals of epoch.

Since it is important to set the optimal number of network parameters in the design of
lightweight neural network, we investigated the relation between the number of parameters
and PSNR according to the various filter sizes. As measured in Table 4, we implemented the
most of convolution layers with 3x3 filter size, except for deconvolution layers to generate
the interpolated feature map that accurately corresponds to the scaling factor:

L(θ) =
1

N

N−1

∑
i=0
‖XHR

(
Xi

)
−Yi‖2

2 (6)

Table 3. Hyper-parameters of the proposed methods.

Optimizer Adam

Learning Rate 10−3 to 10−5

Activation function ReLU
Padding Mode Partial convolutional based padding [23]
Num. of epochs 50

Batch size 128
Initial weight Xavier

Table 4. Relation between the number of parameters and PSNR according to the various filter sizes.

Networks Filter Size
(Width × Height)

Num. of
Parameters

PSNR
(dB)

SR-ILLNN

3 × 3 439,393 31.41
5 × 5 1,153,121 31.38
7 × 7 2,223,713 31.29
9 × 9 3,651,169 28.44

SR-SLNN

3 × 3 262,977 31.29
5 × 5 664,385 31.19
7 × 7 1,266,497 31.16
9 × 9 2,069,313 31.15
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4. Experimental Results

As shown in Figure 4, we used the DIVerse 2K (DIV2K) dataset [24] whose total
number is 800 images to train the proposed methods. In order to design SR-LNN capa-
ble of up-sampling input images four times, all training images with RGB components
are converted into YUV components and extracted only Y component with the size of
100 × 100 patch without overlap. In order to generate interpolated input images, the
patches are down-sampled and then up-sampled it again by bi-cubic interpolation.

Finally, we obtained three training datasets from DIV2K where the total number of
each training dataset is 210,048 images for original images, low-resolution images, and
interpolated low-resolution images, respectively. For testing our SR-LNN models, we
used Set5, Set14, Berkeley Segmentation Dataset 100 (BSD100), and Urban100 as depicted
in Figure 5, which are representatively used as testing datasets in most SR studies. For
reference, Set5 was also used as a validation dataset.

All experiments were run on an Intel Xeon Skylake (eight cores @ 2.59 GHz) having
128 GB RAM and two NVIDIA Tesla V100 GPUs under the experimental environment
described in Table 5. After setting a bicubic interpolation method as an anchor for perfor-
mance comparison, we compared the proposed two SR-LNN models with SR-CNN [9],
AR-CNN [14], and SR-DenseNet [18] in terms of image quality enhancement and network
complexity.
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In order to evaluate the accuracy of SR, we used PSNR and the structural similarity
index measure (SSIM) [25,26] on the Y component as shown in Tables 6 and 7, respectively.
In general, PSNR has been commonly used as a fidelity measurement and it is the ratio
between the maximum possible power of an original signal and the power of corrupting
noise that affects the fidelity of its representation. In addition, SSIM is a measurement that
calculates a score using structural information of images and is evaluated as similar to
human perceptual scores. Compared with the anchor, the proposed SR-ILLNN and SR-
SLNN enhance PSNR by as many as 1.81 decibel (dB) and 1.71 dB, respectively. Similarly,
the proposed SR-LNNs show significant PSNR enhancement, compared to SR-CNN and
AR-CNN. In contrast to the results of the anchor, the proposed SR-ILLNN has similar PSNR
performance on most test datasets, compared with SR-DenseNet.

Table 5. Experimental environments.

Num. of Training Samples 210,048

Input size (XLR) 25 × 25 × 1
Interpolated input size (XILR) 100 × 100 × 1

Label size (YHR) 100 × 100 × 1
Linux version Ubuntu 16.04
CUDA version 10.1

Deep learning frameworks Pytorch 1.4.0

Table 6. Average results of PSNR (dB) on the test dataset.

Dataset Bicubic SR-CNN [9] AR-CNN [14] SR-DenseNet [18] SR-ILLNN SR-SLNN

Set5 28.44 30.30 30.35 31.43 31.41 31.29
Set14 25.80 27.09 27.10 27.84 27.83 27.73

BSD100 25.99 26.86 26.86 27.34 27.33 27.28
Urban100 23.14 24.33 24.34 25.30 25.32 25.18
Average 24.73 25.80 25.81 26.53 26.54 26.44

Table 7. Average results of SSIM on the test dataset.

Dataset Bicubic SR-CNN [9] AR-CNN [14] SR-DenseNet [18] SR-ILLNN SR-SLNN

Set5 0.8112 0.8599 0.8614 0.8844 0.8848 0.8827
Set14 0.7033 0.7495 0.7511 0.7708 0.7709 0.7689

BSD100 0.6699 0.7112 0.7126 0.7279 0.7275 0.7260
Urban100 0.6589 0.7158 0.7177 0.7584 0.7583 0.7532
Average 0.6702 0.7192 0.7208 0.7481 0.7479 0.7447

In addition, we conducted an experiment to verify the effectiveness of skip connections
and dense connections. In particular, the more dense connections are deployed in the
between convolution layers, the more network parameters are required in the process of
convolution operations. Table 8 shows the results of tool-off tests on the proposed methods.
As both skip connections and dense connections contribute to improve PSNR in the test
datasets, the proposed methods are deployed these schemes. Figure 6 shows MSE as well as
PSNR corresponding to the number of epochs and these experiments were evaluated from
all comparison methods (SR-CNN, AR-CNN, and SR-DenseNet), including the proposed
methods. It is confirmed that although SR-DenseNet has the highest reduction-rate in
terms of MSE, the proposed methods have an almost similar increase rate in terms of PSNR.
Figure 7 shows the comparisons of subjective quality between the proposed methods and
previous methods.
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Table 8. The results of tool-off tests.

Skip
Connections

Dense
Connections

Set5 (PSNR) Set14 (PSNR) BSD100 (PSNR) Urban100 (PSNR)

SR-ILLNN SR-SLNN SR-ILLNN SR-SLNN SR-ILLNN SR-SLNN SR-ILLNN SR-SLNN

Disable Disable 31.34 31.15 27.80 27.62 27.31 27.20 25.27 25.01
Enable Disable 31.35 31.21 27.81 27.68 27.33 27.26 25.31 25.13
Disable Enable 31.40 31.18 27.81 27.65 27.32 27.23 25.29 25.07
Enable Enable 31.41 31.29 27.83 27.73 27.33 27.28 25.32 25.18
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In terms of the network complexity, we analyzed the number of parameters, parameter
size (MB), and total memory size (MB) where total memory size includes intermediate
feature maps as well as the parameter size. In general, both the total memory size and
the inference speed are proportional to the number of parameters. Table 9 presents the
number of parameters and total memory size. Compared with SR-DenseNet, the proposed
two SR-LNNs reduce the number of parameters by as low as 8.1% and 4.8%, respectively.
Similarly, the proposed two SR-LNNs reduce total memory size by as low as 35.9% and
16.1%, respectively. In addition, we evaluated the inference speed on BSD100 test images.
As shown in Figure 8, the inference speed of the proposed methods is much faster than that
of SR-DenseNet. Even though the proposed SR-SLNN is slower than SR-CNN and AR-
CNN, it is obviously superior to SR-CNN and AR-CNN in terms of PSNR improvements
as measured in Tables 6 and 7.

Table 9. Analysis of the number of parameters and memory size.

SR-CNN [9] AR-CNN [14] SR-DenseNet [18] SR-ILLNN SR-SLNN

Num. of parameters 57,281 106,564 5,452,449 439,393 262,977
Parameter size (MB) 0.22 0.41 20.80 1.68 1.00

Total memory size (MB) 14.98 17.61 224.81 80.83 36.21
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5. Conclusions and Future Work

In this paper, we have proposed two SR-based lightweight neural networks (SR-
ILLNN and SR-SLNN) for single image super-resolution. We investigated the trade-offs
between the accuracy of SR (PSNR and SSIM) and the network complexity, such as the
number of parameters, memory capacity, and inference speed. Firstly, SR-ILLNN was
trained on both low-resolution and high-resolution images. Secondly, SR-SLNN was
designed to reduce the network complexity of SR-ILLNN. For training the proposed SR-
LNNs, we used the DIV2K image dataset and evaluated both the accuracy of SR and
the network complexity on Set5, Set14, BSD100, and Urban100 test image datasets. Our
experimental results show that the SR-ILLNN and SR-SLNN can significantly reduce the
number of parameters by 8.1% and 4.8%, respectively, while maintaining similar image
quality compared to the previous methods. As future work, we plan to extend the proposed
SR-LNNs to other color components as well as a luminance component for improving SR
performance on color images.
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