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Gradient Flow Evolution for 3D Fusion
From a Single Depth Sensor

Jiwoo Kang™, Seongmin Lee™, Mingyu Jang ™, and Sanghoon Lee™, Senior Member, IEEE

Abstract—We present a novel real-time framework for
non-rigid 3D reconstruction that is robust to noise, camera poses,
and large deformation from a single depth camera. KinectFusion
has achieved high-quality 3D object reconstructions in real-time
by implicitly representing an object’s surface with a signed
distance field (SDF) representation from a single depth camera.
Many studies for incremental reconstruction have been presented
since then, with the surface estimation improving over time.
Previous works primarily focused on improving conventional
SDF matching and deformation schemes. In contrast to these
works, the proposed framework tackles the problem of tempo-
ral inconsistency caused by SDF approximation and fusion to
manipulate SDFs and reconstruct a target more accurately over
time. In our reconstruction pipeline, we introduce a refinement
evolution method, where an erroneous SDF from a depth sensor
is recovered more accurately in a few iterations by propagating
erroneous SDF values from the surface. Reliable gradients of
refined SDFs enable more accurate non-rigid tracking of a
target object. Furthermore, we propose a level-set evolution for
SDF fusion, enabling SDFs to be manipulated stably in the
reconstruction pipeline over time. The proposed methods are fully
parallelizable and can be executed in real-time. Qualitative and
quantitative evaluations show that incorporating the refinement
and fusion methods into the reconstruction pipeline improves
3D reconstruction accuracy and temporal reliability by avoiding
cumulative errors over time. Evaluation results show that our
pipeline results in more accurate reconstruction that is robust to
noise and large motions, as well as outperforms previous state-
of-the-art reconstruction methods.

Index Terms—3D reconstruction,
implicit representation,
reconstruction.

signed distance field,
non-rigid deformation, incremental

I. INTRODUCTION

ITH the advancement of structured-light and time-
of-flight sensors and the broader availability of
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affordable sensors [4] such as the Microsoft Kinect [5]
and Intel ReslSense [6], techniques for reconstructing a
three-dimensional (3D) surface model from a sequence of
depths have been widely studied [7], [8]. Depth measurements
obtained from these commercial sensors are noisy and incom-
plete and contain numerous outliers.

KinectFusion [1], [2] has made a breakthrough in which
the target surface estimation is improved incrementally over
time from a single depth camera, achieving high-quality 3D
reconstructions in real-time. In KinectFusion, a truncated
signed distance field (TSDF) is updated incrementally by
predicting the camera poses using iterative closest points (ICP)
[9], [10] from a given frame. Since then, various techniques for
capturing static environments have yielded impressive results
[11]-[15] using TSDFs. DynamicFusion [16] is the first work
that performed a non-rigid 3D reconstruction in real-time from
a single depth camera by optimizing a coarse-scale warping
field on a TSDFE. Many works have improved DynamicFu-
sion using more features such as color features [17], [18],
albedo [19], and template models [20], [21]. Subsequent works
[3], [22] have proposed variational methods that accurately
track a voxel-wise warp field and handle topological changes.
Recently, a 3D reconstruction pipeline has been proposed
by merging and swapping 3D clusters using segmentation to
better reconstruct more dynamic scenes [23]. A volumetric
structure manipulation method has been introduced to handle
topological changes more efficiently [24]. Some other works
have used priors from a human body model for volumetric
capture of a human [25], [26]. They have tried to non-rigidly
register TSDFs constructed temporally from a moving object
to improve 3D surface estimation.

TSDFs used in those works have a significant benefit in
manipulating 3D objects directly on voxel grids by represent-
ing 3D surfaces implicitly. TSDF values are approximated
by the distance to the object surfaces on the basis that the
projected value into the depth map of a 3D point is equal to its
projective depth if the 3D point is on a 3D surface. However,
this approximation does not match when the point is far
from the surface, resulting in significant approximation errors.
Deformation optimization using discontinuous and inaccurate
gradients leads to the misalignment of TSDFs and, thus,
erroneous TSDFs with artifacts. Errors from the deformation
of TSDFs are “incrementally” accumulated over time in an
integration procedure of TSDFs [27], denoted as “fusion,”
cumulatively decreasing the performance of the reconstruction
pipeline in consecutive frames. As a result, in contrast to
previous works that primarily focused on TSDF registration
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Fig. 1. (a) The procedure of TSDF approximation [1], [2], and (b)—(e) an
example of the proposed refinement method on “Snoopy” in the deformable
3D reconstruction dataset [3]. The proposed evolution method efficiently
refines erroneous TSDFs (d) approximated from a depth map (b) in a few
iterations closer to the original surface as shown in (e). The ground truth
(c) is the full 3D shape of the target, which is constructed using multiview
sequences and visualized for comparison.

and deformation, we focus on the noise and incorrectness
that TSDFs inherently have as they are generated from a
depth map, which can lead to inaccurate TSDF registration.
In addition, we address the problem of TSDF fusion using
level-set evolution to reliably integrate TSDFs and preserve
the signed distance property of the fused TSDF over time.
Thus, in this paper, we propose a novel pipeline for non-rigid
3D reconstruction captured from a single depth camera in
real-time, introducing two meaningful steps in the pipeline to
recover an accurate SDF from a raw SDF and to make TSDFs
reliable over time.

Fig. 1 (a) describes an approximation procedure of the
signed distance from a depth camera. When a depth map is
captured using a sensor, signed distances of 3D points in voxel
grids from an object’s surface are approximated. The signed
distance of a point is trivially approximated by measuring
the difference between its projective depth (z-coordinate value
of the point) and a value obtained by projecting on the
depth map [1], [2]. For example, if the depth map was ideally
measured without noise, the projective depth of the surface
point s1 in Fig. 1 (a) and its sampling value of the depth map
on the projection point have the same value. The distance of
the point p; from the surface (s} p1) is approximated using the
length of the line 571 p7 (blue dotted line), which is calculated
using the difference between the projective depth of p; and its
depth projection value (i.e., the projective depth of the surface
point s1).

However, since this approximation assumes that 3D points
are near the surface and the projection rays are almost parallel
with the surface normal, the procedure inherently produces
erroneous TSDFs in practice. An example of an erroneous
distance approximation (point py) from the surface is shown
in Fig. 1 (a), where the approximated distance (53p3) is far
from the real distance (s p2) from the surface.
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To tackle the underlying 3D fusion problem using TSDFs, a
novel evolution method for TSDF refinement is proposed for
our pipeline. The proposed refinement method is motivated by
the property of the TSDF approximation procedure. [1], [2].
In other words, the point closest to an object’s surface has a
more reliable TSDF value. Thus, TSDF values are iteratively
propagated from the direction of the object surface in the
refinement evolution. The evolution method efficiently refines
a raw TSDF, as shown in Fig. 1 (d), which is approximated
from a depth map in Fig. 1 (b), and produces the refined TSDF
in Fig. 1 (e) within a few iterations. For efficient compar-
ison, the reference target mesh constructed using multiview
sequences is also visualized in Fig. 1 (c). It is demonstrated
in this paper that more accurate and reliable measurements
from the refined TSDF offer significant advantages in the
performance of TSDF deformation, resulting in a stable and
accurate 3D reconstruction pipeline over time.

Furthermore, we propose a level-set evolution method for
a 3D fusion procedure to address the problem of the TSDF
fusion scheme [27], which is conventionally used for incre-
mental 3D reconstruction. We address the temporal stability
of 3D incremental reconstruction using a more reliable TSDF
fusion pipeline. Rather than directly using the linear fusion
of the TSDFs in time, the TSDF values are propagated along
the gradient flow with their iso-distances regularized in the
proposed fusion evolution of our pipeline, enabling the implicit
surface property to be efficiently preserved and the object
surface to be accurately represented on a TSDF in time. Fig. 2
shows an example of the proposed fusion method, where
the evolution provides greater reliability to the reconstruction
pipeline while accurately preserving details when compared
with the conventional fusion scheme. Although each of the
refinement and fusion evolutions is beneficial, it has been
demonstrated that incorporating both evolutions is most ben-
eficial to the reconstruction pipeline because their outputs are
highly related in the pipeline. The proposed pipeline efficiently
manipulates a TSDF so that the TSDF error does not accu-
mulate over time. It enables accurate TSDF deformation with
a few energy definitions, enabling the proposed framework to
outperform state-of-the-art methods.

In summary, we propose a novel real-time pipeline for
non-rigid 3D reconstruction that is robust to the noise, camera
pose, and large deformation by temporally preserving the
reliable implicit surface, in which

o A TSDF refinement method recovers TSDF values in a

few iterations by propagating the TSDF values from the
surface direction, resulting in the accurate deformation,

o A TSDF propagation method for TSDF fusion evolves

the gradient flow of TSDFs with distance regularization,
enabling the reconstruction framework to be temporally
and reliably manipulated, and

o Our pipeline’s procedures are variational and fully paral-

lelizable in real-time, making them simple to implement.

II. RELATED WORK

A. Real-Time Static Reconstruction

3D representations such as 3D points [28], [29], voxels
[15], and meshes [30] have been used to reconstruct 3D
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Fig. 2. An example of the proposed evolution method on “Shirt” in
the VolumeDeform dataset [18]. The fusion scheme conventionally used
for incremental reconstruction does not sufficiently consider the temporal
stability of TSDF representation. With the proposed fusion evolution, unstable
values from noisy depths and alignment errors are efficiently excluded in
time, whereas high-frequency components such as wrinkles are accurately
preserved.

shapes from a stream of depth maps offline [31], [32]. In
these methods, the correspondences between 3D objects are
found by searching for the closest points [9], [10] from each
source in every iteration. These methods require expensive
computational costs to be realized in real-time. In addition,
they are negatively affected by noise and extensive motions.
Many studies [27], [33]-[35] have shown that implicit surface
representations are superior in efficiently handling noise and
large scene movements.

With the benefits of 3D surface representation, real-time
3D reconstruction methods [36], [37] have been introduced,
including KinectFusion [1], [2] in which the dense 3D estima-
tion is improved incrementally over time based on TSDFs [27].
In several subsequent studies, KinectFusion has been extended
to large-scale scenes [13]-[15] and improved for more accurate
reconstruction [11], [12].

Nevertheless, those methods did not consider underlying
errors caused by TSDF generation from a depth map. They
rather instead attempted find better matches for the given
TSDFs. The distance from the surface along the projected
ray to the depth map is used to approximate TSDFs. Thus,
the TSDF values are affected considerably depending on
the viewing direction and the surface normal. Consequently,
we introduce a TSDF propagation method from the normal
flow that is robust to noise and viewing direction to generate
TSDFs.

B. Non-Rigid Incremental Reconstruction

In incremental reconstruction methods, non-rigid surface
deformations are tracked temporally, and surface estimation is
improved over time. In many studies on non-rigid incremental
reconstruction [38]—[42], calibrated multi-cameras have been
used as input sensors. On the other hand, several other
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studies [43]-[50] have used 3D template models for coarse
estimation before reconstructing the target on a fine-scale.
However, those methods require a strict camera calibration
process and they are far from online applications.

Newcombe et al. [16] introduced DynamicFusion, the first
non-rigid method for online surface reconstruction using a
single Kinect depth sensor. DynamicFusion finds a warping
field of non-rigid motion using an implicit surface represen-
tation. Subsequent studies [17]-[19] have improved tracking
performances over DynamicFusion using image features from
the corresponding images such as SIFT and surface albedo.
However, in practice, the color correspondence to the depth
map using off-the-shelf RGB-D sensors is inaccurate due
to noise and coarse sensor resolution. Subsequent works to
more accurately reconstruct dynamic scene from a single
sensor have been conducted using a segmentation method
[23], a volumetric structure to efficiently handle topological
changes [24], human body priors [25], [26], and variational
formulations for voxel-wise warping [3], [22].

Similar to the works of Slavcheva er al. [3], [22], our
framework estimates a dense deformation field via variational
minimization. Rather than employing various features or regu-
larizers, we improve the tracking of the dense field with a few
deformation energy definitions, and this is accomplished by
tackling inaccuracies inherent in the generation and fusion of
TSDFs. Thus, the proposed TSDF evolution for the generation
and fusion can be easily combined with other reconstruction
methods that use TSDFs.

C. Variational Level Set

As level set methods [51]-[54] inherently manipulate topol-
ogy changes and cope skillfully with larger deformations,
they have been used in various applications such as image
segmentation, registration [55]-[58], and 3D surface repre-
sentation [59]-[62]. Level-set based methods [3], [22] have
been proposed to evolve a scene flow rather than evolving the
implicit function directly for incremental reconstruction.

It is important for those variational methods that use an
implicit function to preserve a signed distance from the surface
during optimization. In other words, the gradient magnitude
of the implicit function should to be kept on a unit scale
to achieve stable results [53], [54]. As iterations for level-set
evolution significantly changes the gradient in practice, many
regularization and re-initialization methods [51], [63]-[67] to
preserve the gradient magnitude have been proposed for the
level-set methods.

Reconstruction methods [16]-[18], [38], [39] using TSDFs
inherit the problem of implicit representation. Our framework
addresses the requirement of preserving the implicit represen-
tation property to create a temporally reliable reconstruction
pipeline. The raw TSDF approximated from a depth sensor has
lots of incomplete and inaccurate values and gradients. Owing
to inaccurate values, a target object cannot be represented
using TSDF representation accurately to track and deform
the object with temporal stability. TSDF errors are temporally
accumulated by the fusion procedure from erroneous TSDFs
during fusion procedures, eventually resulting in pipeline
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divergence. In the following, we introduce a novel reconstruc-
tion pipeline to temporally preserve the TSDF property by
addressing the limitations of TSDF construction and fusion
schemes that have been conventionally used in incremental
reconstruction frameworks. The two evolution methods pro-
posed for TSDF refinement and fusion enable temporally
consecutive fusions to be more robust and reliable, and thus,
accurate 3D reconstruction from a single depth sensor.

III. RECONSTRUCTION FRAMEWORK
A. Overview

Similar to other non-rigid 3D reconstruction methods using
TSDFs [3], [16]-[18], [22], [38], [39], our reconstruction
framework from a single depth stream comprises three steps: a
TSDF generation step from a new frame, a deformation step
to the canonical coordinates, and a fusion step of deformed
TSDFs to the reference TSDF in the canonical coordinates.
The overview pipeline of the proposed framework is illustrated
in Fig. 3. After obtaining a motion field ¥; of the current
TSDF ¢, that warps the canonical TSDF through the defoma-
tion step, a user is provided with a live frame visualization
¢ ,ff:fe by deforming the fused TSDF ¢,f 11 backward the
motion field.

A depth map from a sensor is noisy and incomplete,
and TSDF values approximated far from an object’s surface
are erroneous. This yields several mismatch voxels among
TSDFs in the deformation step. These mismatches among
TSDFs used in the following time iterations accumulate TSDF
errors, worsening the overall reliability and accuracy of the
reconstruction pipeline over time.

In the proposed framework, two novel evolutions refinement
and fusion are introduced to efficiently manipulate and yield
reliable TSDF values over time. The values of a raw TSDF
¢; are evolved by propagating the TSDF values from the
normal flow before the deformation step in our pipeline. The
TSDF evolution from the normal flow refines the raw TSDF
to be more accurate and complete and TSDF voxels to have
unit gradients and view-invariant values, i.e., prevents bias
in captured view. Thus, the refined TSDF ¢>,ref "¢ can be
registered more accurately to the reference TSDF using simple
energy definition for data and smooth terms in the deformation
step.

However, TSDFs may not be perfectly aligned through
deformation, especially when capturing a largely dynamic
scene. The subsequent fusion procedure between the deformed
and canonical TSDFs can cause artifacts in the fused TSDFE.
The artifacts in the reference frame cause more significant
misalignment and artifacts in consequent frames, eventually
resulting in tracking failure.

We address the temporally reliable fusion procedure fusion
limitation using the gradient propagation scheme of the canon-
ical TSDF toward the fused TSDF. The level-set fusion through
the propagation prevents significant topology changes caused
by the misalignment of TSDFs while preserving the signed
distance property of the TSDFs to be regularized.

In the following, we first introduce mathematical symbols,
definitions, and notations by over-viewing TSDF generation
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from a depth stream (Sec. III-B). Subsequently, TSDF propa-
gation for refinement by evolving TSDFs from the normal flow
is presented (Sec. III-C). Then, the deformation energies for
tracking TSDFs are presented (Sec. III-D) Consequently, the
level-set evolution for TSDF fusion using gradient propagation
is proposed (Sec. III-E).

B. Preliminaries

A signed distance [54] from an arbitrary point to an object
surface can be approximated using a difference from its pro-
jection to a depth map, assuming a depth sensor is calibrated.
Because this approximation is valid only near the object
surface, the signed distance over the predefined threshold is
truncated [68]. For discretized cubic voxels x = (x, y, z) € N3
corresponding to 3D points in coordinates X = (X,Y, Z)
€ R3, TSDF ¢(x) is constructed by measuring the signed
distances. The signed distance dist(x) is approximated by
projecting the points into the depth map D [1], [2] as

dist(x) = D (Il(x)) — Z, (1)
¢ (x) = sgn (dist(x)) - min (|dist(x)], r)/r, 2)
o(x) = 1.0, if dist(x) > —7 @)

0.0, otherwise

where IT : R? — N?Z is the projection operator to pixels on the
depth map from 3D coordinates, sgn (-) is the sign operator,
7 is the truncated margin, and w(x) is the TSDF weight. The
TSDF representation is easily converted to mesh representation
through the marching cube algorithm [69].

When TSDFs constructed from consecutive depth frames
are given, they can be fused using the weighted average
scheme [27]. The truncated margin 7 guarantees TSDF accu-
racy by ignoring regions far from the object surface and
determines the expected thickness of the object surface. It
is necessary to set the truncated margin sufficiently to rep-
resent TSDFs accurately near the surface and evolve the
gradient fields. However, an extremely large margin makes
the boundaries between the TSDFs to be smooth in the fusion
procedure. The truncated margin is determined depending on
the resolutions of a TSDF volume, depth map, and depth
sensor noise in practice. In our experiments, the margin 7
is set to five times vy, where vy is the voxel size, an actual
distance between grid voxels.

It is assumed that a single depth sensor is used and both the
target shape and the camera position change over time. Our
system reconstructs the target surface, while improving surface
estimation over time for the non-rigid target. For a depth
map in time ¢t (D;), the TSDF ¢;(x) and the corresponding
weight @, (x) volumes are constructed using (2) and (3).
However, the raw TSDF ¢; is inherently incomplete and
noisy. For reliable reconstruction, the raw TSDF is refined
to accurately represent the signed distance from the surface
through the TSDF evolution from the normal flow before
TSDF deformation.

C. TSDF Evolution for Refinement

The core motivation of the proposed method is from the
fact that only the approximated values of TSDFs close to
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Fig. 3. An overview pipeline of the proposed reconstruction framework from a single depth sensor stream, where a live frame visualization ¢’ il b

accomplished by finding a deformation field ¥; to the canonical frame for a given depth frame D;. The raw TSDF approximated using the conventional
TSDF construction method is incomplete and has a lot of noise. TSDF values are accurately recovered in a few iterations through the refinement procedure,
facilitating a more robust deformation procedure. The subsequent level-set evolution for the fusion procedure enables the framework to work reliably and

accurately over time.
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Fig. 4. (a) TSDF refinement procedure visualization and (b)—(d) iso-surface
visualizations before and after the refinement procedure on “Shirt” in the
VolumeDeform dataset [18]. The raw TSDF shows uneven and perspective
biased iso-surface lines. In the refinement procedure, TSDF values are
propagated iteratively from the normal direction of the object surface based
on the property of the TSDF approximation that the point nearer to the
object surface has a more reliable TSDF value and gradient. The refinement
procedure efficiently improves TSDF representations while preserving the
surface details in a few iterations.

an object’s surface are from the depth sensor [1], [2] can
be reliable. They are always close to zero regardless of the
projected ray, as depicted in Fig. 1. The proposed refinement
method propagates TSDF values from the surface by iteratively
replacing each TSDF voxel value with that obtained from
the direction of the unit normal. In other words, every voxel
updates its values from the opposite direction of the object’s
surface. The unit step distance of the propagation is deter-
mined depending on the voxel size vg. The TSDF refinement
evolution at iteration i > 1 is formulated as

¢ (%) = ¢) (x — sgn (¢ () - m) + vy )
where n = %%. The refinement starts with the raw TSDEF,

e $1 (%) = 1 ().

In an implicit surface representation, the surface normal
n in (4) can be calculated as the normalized gradient [54].
The sign operator determines whether the voxel is inside or
outside the surface. When it is outside the surface, it obtains
the value from the negative normal direction. When it is inside

the surface, the normal direction is toward the surface. Because
the method propagates the reliable values from the surface
using the unit distance for every iteration, it is sufficient
to repeat the propagation until TSDF truncated regions are
achieved. Thus, the maximum number of iterations required
for TSDF refinement is equal to or less than the magnitude
of the truncated margin 7 in the voxel unit. In practice, 3
to 5 voxels are used for 7 in most of the previous studies [3],
[22], [39], enabling TSDF values to be recovered in a few
iterations by the proposed refinement method.

Voxels near the surface, whose distance from the surface
is less than the voxel size vy, need to be manipulated more
precisely to preserve the object surface positions while improv-
ing the TSDF representation. Therefore, for a voxel whose
distance from the surface is less than vy, it uses the value on
the surface via trilinear interpolation for the propagation, as
described using the red dotted arrows in Fig. 4 (a). Thus, the
formulation in (4) is revised as

Pt (x) = ¢! (x — sgn (¢ (X)) - 1) + b5 (%) 5)

: T
¢} (x)]) and i = |v$f|3—;-

Figs. 4 (b), (c), and (d) show an example of the proposed
refinement evolution, where 3D iso-surface lines of the surface
are visualized. The raw TSDF values are much affected
by the captured or projected direction. In other words, the
iso-surface lines are perspective biased since TSDF values
are approximated along the perspective direction. In addi-
tion, iso-surface line intervals far from the object surface
are significantly uneven, showing the object surface is not
sufficiently represented by the implicit representation. The
proposed refinement procedure improves the raw TSDF in a
few iterations efficiently by propagating the TSDF values from
the surface.

It is essential to calculate reliable gradients to obtain
accurate surface normal directions because the TSDF values
from a depth sensor are incomplete and noisy. From the
definition of the finite difference, three types of gradients can
be considered for the gradient operator: forward, backward,
and central differences. The three types of gradients along the
x coordinate can be defined, respectively, as

where 0 (X) = min (vs,

ngé:r=¢;(X+1,y,z)—¢;(X,y,Z), (6)

nglst_:¢1(X,y,Z)_¢[(X_1,y,Z), (7)
+ —

quﬁ? — M (8)
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In many computer vision and image processing algorithms, the
central difference is preferred since it yields approximations
more accurate and robust to noise. However, it is difficult to
manipulate discontinuous and invalid values efficiently of raw
TSDFs using the central difference.

Inherently, TSDF values near the surface are more reliable
than values far from the surface. In addition, as TSDF values
are propagated from the surface in the proposed evolution for
TSDF refinement, values nearer to the surface become more
reliable. Given these TSDF values, a reliable gradient can
be measured from the surface direction, i. e., the propagated
direction.

Thus, the gradient along x-coordinates is defined for our
propagation as

qustJra if ¢t = O, qustJr =< O
or ¢ <0, quﬁ;r >0
Vi = Vx¢t77 if ¢ <0, Vx¢t7 >0 )
or ¢ >0, Vip, <0
0. otherwise

For reliability, saddle points are defined as zero gradients.
The formulation in (9) is also used for gradients along y-
coordinates.

A different scheme is used for calculating gradients along
z-coordinates because we have a significant prior along the
depth direction. For raw TSDFs from a calibrated depth sensor
(i.e., the camera intrinsic is known), the surface normal is
always toward the negative z-axis. Therefore, TSDF gradients
along z-coordinates can be defined more simply and accurately
as

Vz¢t_7 ¢T 2 O
Vgt ¢ <0

The gradient measurements proposed in (9) and (10) allow
obtaining the gradients from the surface direction. In particu-
lar, the measurement in (9) calculates the gradients from the
surface direction along x- and y-coordinates by seeking the
increasing or decreasing direction of the gradient flow. Mean-
while, the measurement in (10) calculates the z-coordinate
gradient using capture direction priors of a depth sensor. The
measurements enable our refinement method to update the
TSDF voxels from near-surface towards far-from-surface fully
parallel without a specific order.

Fig. 5 depicts the magnitude of the surface gradient and the
direction of the surface normal at the beginning, refinement
iterations i = 2 and 5. The TSDF and gradient values of the
truncated interval (£5 voxels) of the surface are visualized.
The refinement procedure accurately corrects invalid gradients
in raw TSDFs while preserving the object surface by propagat-
ing the gradients from the surface direction. The propagation
restores smooth and complete gradients with uneven and noisy
gradients within a few numbers of iterations, i.e., the truncated
voxel size (i = 5). When using the central difference to
calculate TSDF gradients for the refinement procedure, the
propagation does not sufficiently improve uneven gradients
because both invalid and valid gradients are used for propaga-
tion regardless of the surface direction. In contrast, using the

V¢t = (10)
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Central Difference TSDF Refinement
(i=2)

Raw

(i=0) (i=5) (i=2) (i=5)

Fig. 5. The surface gradient and normal visualizations of the truncated
interval (£5 voxels) at the refinement iterations i = 0, 2, and 5 on “Minion”
in the VolumeDeform dataset [18]. The raw TSDF values approximated from
the depth map are incomplete and erroneous (i = 0). The proposed refinement
method improves uneven TSDF values and gradients of the raw TSDF in a
few iterations by propagating the TSDF values from the surface direction.
The method measures the surface direction toward each voxel using the
gradients nearer to the surface because (1) the raw TSDF has more accurate
values and gradients nearer to the surface initially and (2) the refinement
method propagates more reliable TSDF values from near the surface to far;
thus, more accurate values can be obtained from the nearer direction over
the refinement iterations. Compared with the refinement evolution using the
surface direction estimation from the central difference, the proposed surface
direction estimation efficiently supports the proposed evolution to refine the
TSDF values more reliably and accurately.

more reliable gradients measured from the propagated direc-
tion enables the refinement method to improve raw TSDFs
more accurately.

D. TSDF Deformation

The deformation step is a procedure to find voxel-wise
motion vectors to the canonical TSDF. We denote a vector
warp field ¥ = (U,V,W) e R3 that aligns incoming
TSDFs at time (¢ (x)) to the reference TSDF (¢, use (x))
in the canonical coordinates. In other words, a deformed
TSDF ¢tdef ™ (x) is found in the deformation step, satisfying

(T (%) = oy (x+ ) 2 ¢ ().

Our framework mainly tackles the temporal reliability limi-
tation of incremental reconstruction techniques using refine-
ment and fusion propagation procedures to stably preserve
TSDF representation in time in contrast to other relevant works
that focused on the deformation step. Therefore, we use the
simple variational formulation widely used to find a motion
field, i.e., scene flow [70]—[74] for TSDF deformation. Thus,
two energy terms are defined for non-rigid 3D reconstruction:
data and smoothness terms as

Edeform (\P) = Edata (\P) + Wsmooth Esmooth (\P) (11)
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Without refinement step

(b) t =150

Fig. 6. Comparisons with and without the refinement step before the defor-
mation step performed on “Duck Loop” in the deformable 3D reconstruction
dataset [3]. In each pair of images, the source object (colored in red) is
non-rigidly registered to the target object (colored in green) in the TSDF from
the initial state in the first of the pair images. Although the misalignment error
seems to be insignificant at # = 50 for the deformation without refinement, tit
increases over time and can significantly affect the reconstruction pipeline’s
accuracy, as seen in the deformation at # = 150. It is shown that the refinement
evolution plays a significant role in the accurate and reliable deformation of
TSDFs in the incremental pipeline while preventing error accumulation in
TSDFs over time.

where wsmootn 1S a constant that balances the smoothness of
motions. The data term and smoothness term can be defined,
respectively, as

Eaara () = 37 (1 (4 %) = 9/ ()

X

1
Esnoorn (¥) = 3 2 (IVUP + [VVE+|VWP).  (13)
X

2
; (12)

The vector warp field is obtained by updating the field
iteratively using the variational derivative of the energy in (11).
The formulation at iteration k > 1 is represented as:

‘~Ptk+l = lIth =+ OtdeformVEdeform (Tt) (14)

where VEicform = VEdgatat®smootnV Esmootn and Adeform is
the step size of gradient descent minimization. For an initial
warp at the first depth frame ‘I—’l1 (x), all motion vectors are
set as zeros. For initial warps at the following frames ¥, (x)
(t > 2), the final warp at the previous frame is used. In our
implementation, the iteration ends when the maximum vector
update in (14) reaches below a threshold of 0.1 mm. Using
the calculus of variations, the derivatives of energies in (12)
and (13) are obtained, respectively, as

VEjata (¥) = (¢ X+ V) — drey (X)) Vb (x + ), (15)
VEgnooth (W) = — (AU, AV, AW). (16)

Even with the simple formulation for the deformation in
(11), the proposed refinement method provides reliable gradi-
ent measurements, enabling a source TSDF to be accurately
registered to a target TSDF. Fig. 6 depicts the benefit of
the refinement procedure in the deformation step, where a
source object (colored in red) is deformed to a target object
(colored in green). As the variational method, including other
optimization schemes, finds the optimal solution of the energy
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in (11) using TSDF gradients, the more accurate and reliable
gradients improve the accuracy of the deformation step.

E. Level-Set Evolution for the Fusion

As described in Fig. 3, a raw TSDF representation ¢;(X)
at time ¢ in (2) is improved in the refinement step using (5),
producing a refined TSDF ¢, efin¢ (x). In the deformation step,
the refined TSDF ¢/ (x) subsequently register non-rigidly
the reference TSDF ¢;"“*“(x), producing a aligned TSDF
a);ief "™ (x). The reference TSDF ¢/ “*¢(x) is the accumulation
of the TSDFs from the first to the previous frame ¢ — 1 in the
canonical coordinates. In general, the coordinates of the first
frame [3], [22] or the keyframe [39] is chosen as the reference
frame. In our implementation, the first frame is used as the
reference frame.

The aligned TSDF a);ief ™ (x) is combined with the refer-
ence TSDF, producing the reference TSDF of the following
iteration ¢tf +1°(x). The procedure is denoted as TSDF fusion.
In the incremental reconstruction, the fusion step is a sig-
nificant procedure to integrate a target object from multiple
frames over time. The fusion accuracy considerably depends
on the quality of TSDFs from the deformation step. Therefore,
for a more reliable fusion procedure, the TSDF refinement
step is proposed in Sec. III-C to improve the accuracy of the
deformation step. Nevertheless, the accuracy of TSDF fusion
significantly affects the overall reliability of the reconstruction
pipeline in the subsequent frames. We propose a level-set
fusion evolution for the pipeline reconstruction pipeline to
make the reconstruction more robust in time.

The TSDF fusion can be represented by the following
formulations using the weighted average scheme [27] as

wtfrlse(x) = ] use(x) + w;ieform (X), (17)
fuse use deform deform
fuse, .\ @ (X) - (X) + oy (x) - ¢ (x)
¢t+l (X) - fuse
w1y (%)
(18)
use deform

where ;" (x) and o, (x) are the TSDF weights cor-
. fuse deform .

responding to ¢;  (x) and ¢, (x), respectively, for the

voxel x at the iteration 7.

However, the non-rigid deformation of TSDFs does not
preserve the magnitude of TSDF gradients. In addition, the
TSDF gradients tend to be unreliable and irregular due to
noise and misalignment. The weighted average fusion scheme
can mitigate the effect of those unreliable values on the fused
TSDF by preventing rapid changes in TSDF values based
on temporal statistics. Nevertheless, the weighted average
scheme does not resolve but accumulates inaccurately repre-
sented values gradually, producing unreliable reconstruction
results in time. The truncated weight [1], [2], [16] and the
reference-biased weight [39] schemes have been introduced to
decrease artifacts caused by the fusion procedure. In the trun-
cated weight scheme, the maximum magnitude of the TSDF
weight in (18) is truncated with the predefined value w4y,
ie., wtfflse(x) = min(w[ffe(x),wmax). The truncated weight
scheme can ensure the minimal influence of the incoming
frame on the fused TSDF over time. The reference-biased
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Sampled input TSDFs from single depth frames in “Duck Loop” [3]

(a) t = 200

Fig. 7. Fusion comparisons using different fusion schemes on “Duck
Loop” in the deformable 3D reconstruction dataset [3] (first row). The 3D
reconstructed results in the canonical coordinates at frame ¢ = 200, 400,
and 600 are visualized. It can be seen that the fusion evolution facilitates
reliable 3D reconstruction from a depth sequence of a dynamically moving
object. Compared to other schemes [2], [27], [39], the proposed fusion
evolution reconstructs a target surface more accurately and incrementally.
The combination of refinement and fusion schemes in the reconstruction
pipeline significantly increases the reliability of the pipeline, enabling precise
reconstruction over time.

(b) t =400 (c) t =600

weight scheme provides linearly lower weights diependlng on
~ e orm

the distance from the reference TSDF, i.e., @, x) =
¢_/use (X) _¢de_/0rm (X)
j 5 t ow;ief o™ (x). Although these fusion

schemes help to manipulate the change rate of the canonical
TSDF efficiently, they cannot sufficiently maintain the TSDF
representation in time.

Fig. 7 shows reconstruction results in the canonical coor-
dinates performed on a depth stream of a dynamically
moving object. Owing to misalignment in the weighted
average scheme, artifacts worsen tracking and reconstruction
performance gradually in time. The truncated weight scheme
does not cope well with a dynamic object as it accelerates the
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@ o] "> (b) g/ © o1 @ of5°
Fig. 8. The iso-surface visualizations of TSDFs that are incorporated 1n the

‘use

TSDF fusion procedure. The reference TSDF of the previous frame ¢,
(a) and the deformed TSDF of the current frame ¢def O (b) s fused using
use

the conventional fusion scheme [27], yielding the raw fused TSDF (;5[ 1 (c),
which contains noisy, distorted, and irregularly distanced values. The proposed
fusion evolution addresses the problem (n01se distortion, etc.) by propagating

¢tf “S¢ along the gradient flow toward ¢S Juse: while regularizing the TSDF

distance. The efficiently regularized TSDF through the fusion propagation

é; -rls ¢ (d) increases the temporal reliability of the reconstruction pipeline.

propagation of misalignment errors into the reference TSDF.
The reference-biased weight scheme helps 3D shapes in the
canonical coordinates to be more preserved against erroneous
deformation than the other schemes; however, it does not
sufficiently help TSDFs to accurately deform and reflect a
target shape from a depth stream.

In the following, we denote the raw fused TSDF by the

formulation in (18) as &/"“¢ at the current frame and the

t+1
output from the proposed TSDF fusion evolution as ¢tf fls ¢ for

clarity. In the proposed evolution for TSDF fusion, the refer-

ence TSDF at the previous frame (gbtf fls “) is propagated toward

the raw fused TSDF ¢tf /1 at the current frame, consequently

producing the reference TSDF at the current frame (gbtf fls ). As
depicted in Fig. 8, the evolution prevents distinct value changes
caused by noise and misalignment by propagatm% gradients of
the source TSDF ¢/ "¢ toward the fused TSDF ¢} Besides,
TSDF gradients are regularized with a unit scale during the
evolution. In other words, the evolution recovers TSDFs by
following the property of the implicit surface representation.
Thus, we define the variational formulation for TSDF fusion,
which is composed of two energy definitions: data (E;4:4)
and regularization (E;is;) terms. The TSDF fusion evolution

energy is defined as

Efuse ($) = D Edata ($1) + @aist Eaisi ($) ~ (19)

2
where Egarq (¢ (X)) = 2 (¢tf-:ive (x) — ¢ (X)) and wgis; > 0
is a constant that balances propagation and regularization. We
use the regularization energy for an implicit function proposed
by Li et al. [51] to preserve the gradient magnitudes. The
regularization term is defined as

Eaist () = / (194, Ddx 20)

where

on) (1 —cos(2ms)), if s <1
T

S = )2

p(s) =
if s >1
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(2) waist = 0.005

(b) wasse = 0.02

(©) wgist = 0.1

Fig. 9. Fusion visualizations colored with surface normals according to the
parameter wg;s; on “Snoopy” in the deformable 3D reconstruction dataset [3].
The distance regularization aids in accurately representing a target surface by
preserving the TSDF property. However, large values can result in overly
smooth surfaces.

The constant wyjs; controls the magnitude of the TSDF
distance regularization. The regularization term plays a
significant role maintaining the signed distance property
(i.e., the unit magnitude) in evolving TSDFs. However,
extremely strong regularization can cause TSDFs to evolve
into representing over-smooth surfaces, as described in Fig.9.
Therefore, a proper value needs to be selected to balance the
temporal reliability and high-frequency details.

The energy in (19) is minimized by iteratively updating
TSDF voxel values using the variational derivative. The for-
mulation at iteration j > 1 is represented as

17100 = ¢ ) + 0 use VE fuse (4 ()

where VE ry50 = VEgaa+ uVEgis and o g, 1S a step size
of gradient descent minimization. The fusion propagation in
(21) starts from the reference TSDF (i.e., ¢} (x) = ,f 5¢(x))
and iterates until it converges. In our implementation, the
iteration ends when the maximum magnitude of the gradient
over voxels in (21) reaches below a threshold of 0.1 mm. The
average number of iterations in our experiments is 19.3.

The derivative of the data term V Ey,;, is obtained using
the standard calculus of variations [54] as

VEdaa®) = ($15°00) — 6 ®0) [V ).

The derivative of the distance regularization term V Ejjg; in
(20) is represented as
) vé)

VEgis = div (dp (’ws,f
. .
—sin 2zs), if s <1

dp(s) =12x
s—1,

21

(22)

(23)

where

if s > 1

and div (-) is the divergence operator. The regularizer in (23)
decreases |V¢@| when |V¢| > 1, whereas increases |V¢| when
% < |V¢| < 1. It efficiently handles noise and outliers by
further decreasing |V¢| when |[V¢| < %

Fig. 2 and the last two rows of Fig. 7 show examples of the
evolution of the TSDF fusion over time. While different fusion
schemes can be useful in certain situations, it is necessary to
preserve the reliable TSDF representation for accurate tracking
and reconstruction from a depth stream temporally. In partic-
ular, the combination of the two evolution methods for the
TSDF refinement and fusion enables the proposed framework
to reliably and accurately deform TSDFs significantly over
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Fig. 10. Convergence iteration comparisons of variational approaches for
the TSDF reconstruction on a single-view RGB-D stream of “Alex” in the
deformable 3D reconstruction dataset [3]. The reliable TSDF manipulation
of the proposed method significantly decreases the number of iterations that
converge.

time without regularizing gradients during deformation [75],
penalizing volume distortions [3], using gradient flow in the
Sobolev space [22], or using feature terms in the color space
[18], [39]. The performance comparisons of methods that used
these techniques are presented in the experimental section.

IV. EXPERIMENTAL RESULTS

In this section, we compared the proposed framework
to state-of-the-art pipelines for 3D reconstructions using a
single RGB-D camera. The evaluations were performed on
public RGB-D datasets. For dynamic scenes, the VolumeDe-
form dataset [18] captured using Asus Xtion PRO and the
deformable 3D reconstruction dataset [3] captured using
Microsoft Kinect vl were used. The dataset in the work of
Tsoli and Argyros [76] captured using Microsoft Kinect v2
was used for topology-changing scenes. To demonstrate the
effectiveness of the proposed method, we constructed RGB-D
sequences using one of the latest RGB-D sensors, Microsoft
Kinect Azure, to validate the reconstruction performance of the
proposed framework on a rigid scene and sequences of more
dynamic objects, such as a person in motion. In addition, the
3D sequence dataset in [40] was used to quantitatively evaluate
the tracking feasibility of the proposed method in a dynamic
scene. The entire sequences of Figs. 11, 14, and 16 shown in
the experimental section are presented in the Supplementary
Material. All the results in the experiments were obtained
without any pre-computation or template model.

A. Implementation Details

The TSDF evolutions in Secs. III-C, III-D, and III-E,
including the generation in Sec. III-B, are fully parallelizable
for each voxel. We use one Nvidia RTX 2080 Ti GPU for
testing in our experiments. We used the bounding volume of
150 x 150 x 150 for every test. Depending on the target object
size, we vary the voxel size 3-10 mm to fit the object into
the bounding volume. In our implementation, the parameters
of our framework are set as Wsmoorn = 0.3 and ageform =
0.2 for deformation and wgis; = 0.02 and ayrue = 0.2
for fusion propagation. As we set the truncated margin t
to five times the voxel size vy, the number of iterations
for the refinement is set to 5. The refinement, fusion, and
deformation procedures cost 4 ms, 9 ms, and 19 ms on
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Qualitative comparisons on the rigid scene at frame ¢ = 0, 90, and 180. The surface overlaps between the canonical (colored in green) and wrapped

TSDFs (colored in red) and the reconstruction results obtained from (a) KinectFusion [1], [2], (b) SDF2SDF [12], and (c) the proposed method.

average, respectively. To achieve 30 frames per second more
consistently, our framework pipeline is performed in one-frame
delayed in real-time.

B. Convergence

The number of iterations for the proposed deformation
procedure to converge is evaluated and compared with those
of two state-of-the-art variational deformation schemes for
TSDF reconstruction from a single stream: KillingFusion
[3] and SobolevFusion [22]. KillingFusion uses an approx-
imately Killing vector field constraint [77] to penalize vol-
ume distortions during deformation. In SobolevFusion, the
gradient flow of TSDFs is calculated by projecting TSDF
gradients into the Sobolev space [78] to evolve TSDFs in
a coarse-to-fine manner. We assume that the optimization
procedure converges when the maximum vector update in
(14) reaches below a threshold 0.1 mm. Fig. 10 depicts
the convergence iterations for the variational schemes on
the large-motion sequence, “Alex” in the deformable 3D
reconstruction dataset [3]. The average iterations and standard
deviations of the KillingFusion, SobolevFusion, and proposed
measure 69.225+22.768, 57.4811+12.250, and 27.83245.693,
respectively. SobolevFusion shows a lower number of iter-
ations than KillingFusion because it uses scalable gradi-
ents calculated in the Sobolev space. The proposed method
significantly decreases the number of iterations by reliably
maintaining the signed distance representation. A low standard
deviation indicates that the proposed pipeline can rapidly
operate with temporal stability.

C. Experiments on Rigid Scene

To verify the proposed evolution methods, we evaluate the
reconstruction performance on the rigid scene. The compar-
isons are conducted with two rigid TSDF reconstruction meth-
ods: KinectFusion [1], [2] and SDF2SDF [12]. KinectFusion
finds a rigid transform between the iso-surface of the TSDF
and a given frame depth using ICP. SDF2SDF is a variational
method that uses the TSDF gradients to find a rigid transform.
For fair comparison with the rigid reconstruction methods,

we update all the TSDF voxels by an average value of the
deformation derivative in (15) over voxels to transform the
TSDF rigidly. The smoothing term in (16) does not affect
because the laplacian of the rigid wrap is zero. Fig. 11 shows
reconstructions in the canonical frame and surface overlaps
between the canonical and wrapped TSDFs at initial and two
different intermediate times. Although these lead to minor
misalignment in a pair of consecutive frames, the accumulated
misalignment error over time can cause large artifacts. The
reconstruction results of KinectFusion show an example of the
accumulated artifact, a dog that has a couple of heads. Com-
pared to KinectFusion that minimizes the surface distance,
SDF2SDF minimizes the TSDF difference. Thus, every valid
value of the TSDF is involved in the optimization procedure of
SDF2SDF, enabling more accurate results than KinectFusion.
Nevertheless, the results show that noisy depths and accumu-
lated errors over time significantly affect the alignment and
reconstruction of SDF2SDF. The proposed method shows the
most accurate and reliable alignment and reconstruction results
by handling errors over time, demonstrating the effectiveness
of the proposed TSDF evolution method.

D. Experiments on Dynamic Scene

We compare the accuracy of our pipeline with three
state-of-the-art TSDF reconstruction methods: KillingFusion
[3], SobolevFusion [22], and SurfelWarp [17]. SurfelWarp
improves DynamicFusion [16] using surfel based representa-
tion. Similar to the proposed deformation step, SobolevFusion
and KillingFusion use the variational formulation for defor-
mation. Figs. 12 and 13 show qualitative and quantitative
non-rigid reconstruction results on single-view streams of
VolumeDeform [18] and the deformable 3D reconstruction [3]
datasets.

KillingFusion has the lowest geometric accuracy among the
methods on both datasets. The variational level-set approach,
used in the KillingFusion, SobolevFusion, and the proposed
method, tracks the TSDF volume voxel-wisely, enabling a
sub-voxel level accuracy deformation. However, variational
optimization is much more vulnerable to error and noise of
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Fig. 12. Qualitative and quantitative non-rigid reconstruction results on single-view RGB-D streams of “Minion” and “Sunflower” in the VolumeDeform [18]
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reconstruction dataset [3] dataset.

TSDFs because voxel-wise gradient propagation is prone to
get stuck in local minima. SurfelWarp uses an embedded
deformation (ED) graphs [79] to parameterize 3D surface
deformation. The ED graph transforms a 3D surface smoothly
and densely over space using a sparsely sampled point set.
The deformation using sparse points prevents geometric opti-
mization from getting stuck into local minima, achieving
better accuracy on average than KillingFusion. Despite the
better convergence of ED parameterization, it is difficult to
obtain the fine-scale details of the 3D surface from a sparsely
sampled set of transformation basis functions. SobolevFusion
shows better results than KillingFusion in our experiments
by hierarchical propagation using the gradient in Sobolev
space, similar to results as reported in [22]. SobolevFusion

S EFEEL L b Lk

Qualitative and quantitative non-rigid reconstruction results on single-view RGB-D streams of “Snoopy” and “Duck” in the deformable 3D
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achieves better accuracy than SurfelWarp by efficiently coping
with noisy gradients using a coarse-to-fine evolution in the
Sobolev space. Nevertheless, SobolevFusion and KillingFu-
sion innately suffer from the instability and incompleteness
of TSDFs caused by their generation and fusion, accumu-
lating TSDF errors in time. Gradient measurement in an
erroneous TSDF can make the overall pipeline unreliable.
The results demonstrate the proposed framework’s ability to
reconstruct 3D geometry more accurately and robustly. Our
framework achieves better accuracy and reliability. It has
been demonstrated that maintaining the TSDF property in
time significantly increases reconstruction accuracy, enabling
stable and reliable tracking and reconstruction from a depth
Sensor.
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(d) KinectFusion (e) SobolevFusion (f) Proposed

Fig. 14. Qualitative comparisons of dynamic reconstructions on single streams in the dataset captured using Microsoft Kinect Azure using (a), (d) KinectFusion
[1], [2], (b), (e) SobolevFusion [22] and (c), (f) the proposed method, respectively. The first and second row visualize the reconstruction results colored with
the surface normal at the frame numbers 50 and 300, respectively. The last row shows back-face visualizations corresponding to the second row.

Colletetal.[29]
—— Dynamickusion[11]
— SobolevFusion[17]
6~ —— Proposed

Mean Hausdorff Distance (mm)
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Fig. 15. Quantitative comparison on the multiview stream “Break Dancers”
in the dataset of [40]. The proposed framework performs reliably on the
multiview sequence, showing a similar mean error to one of the state-of-
the-art offline methods.

E. Experiments on Largely Dynamic Sequences

We validate the tracking and reconstruction performance
of the proposed framework on the streams of more dynamic
objects, such as a person in motion. The results are compared
with SobolevFusion [22], which shows better performance
than the other comparison methods in Sec. IV-D. In addition,
the results of KinectFusion [1], [2] are compared with those of
the proposed method to more clearly validate reconstruction
performance between rigid and non-rigid techniques. Fig. 14
shows qualitative comparisons between the methods on single
streams captured using Microsoft Kinect Azure. In the first two
rows, the reconstructed shapes at frame numbers 50 and 300
colored with the surface normal are represented, respectively.
The last row represents the back-side view corresponding to
the reconstructed shape of the second row.

KinectFusion uses the surface location and gradient (nor-
mal) to match the correspondence to the new frame depth
rather than fully using the TSDF gradients. Thus, Kinect-
Fusion is unable to sufficiently cope with noisy depths with
uneven surface normals. In addition, it cannot handle object
deformation at all, resulting in tracking failures and significant

artifacts in its reconstructed shapes from dynamic streams. In
the initial frames of the sequence (the first row), the difference
between SobolevFusion and proposed is not significant. The
shape reconstructed using the proposed framework is slightly
less noisy. However, significant differences can be seen in
sequence’s intermediate frames (the second row). Sobolev-
Fusion reconstructs the 3D shape progressively in short-term
sequences but hardly creates a complete 3D shape for the
dynamic object. It is more clearly seen in the back-side view
as described in the last row of Fig. 14. The proposed method
reconstructs the entire object in the TSDF by tracking the
dynamically moving object, whereas SobolevFusion eliminates
the shape in invisible regions while tracking the visible region.
The results demonstrate that the proposed framework enables
the object to be tracked accurately in long-term sequences,
which is especially beneficial for tracking dynamic objects.

To quantitatively validate reconstruction performance on
the streams of dynamic objects, we measure the accuracy of
the methods on the 3D dynamic sequence dataset in [40].
DynamicFusion [16] and SobolevFusion [22] are used for the
comparison. In addition, we compared the proposed method
with one of the state-of-the-art offline reconstruction methods
[40]. Following the previous approach [39], we used the
Hausdorff Distance [80] to measure the mean error against the
ground truth mesh. DynamicFusion and SobolevFusion track
a target object for the initial frames of the sequence; however,
they fail to reliably reconstruct the target from the long-term
dynamic sequence. In contrast, the proposed method stably
tracks and reconstructs the object surface temporally, achieving
results comparable to the offline method [40].

F. Experiments on Topology-Changing Scene

To validate the advantage of the proposed method on
topology changes, we evaluate the reconstruction performance
on the topology-changing dataset in Tsoli and Argyros [76].
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Qualitative comparisons of non-rigid reconstruction results on “Paper” and “Bread” of the topology-changing dataset in Tsoli and Argyros [76].

(a) Input images of initial (canonical) and current frames, and reconstruction results in canonical and live-frame coordinates obtained from (b) KillingFusion

[3], (¢) SobolevFusion [22], and (d) the proposed method.

The comparisons are conducted with two variational methods:
KillingFusion [3] and SobolevFusion [22]. These two methods
are capable of handling topological changes in dynamic scenes
by wrapping TSDF values voxel-wisely. We used 10 recent
frames for fusing the TSDFs in the canonical space using (18)
to clearly reflect the topological changes. Fig. 11 shows recon-
struction results in canonical and live frames, respectively.
The two images in Fig. 11 (a) depict initial and intermediate
frames, respectively. The reconstructed TSDF from the initial
frame is used as the canonical TSDF and updated over time
by wrapping incoming TSDFs into the canonical TSDF. The
reconstruction results in Figs. 11 (b), (c), and (d) are the
surface visualizations of canonical and live-frame TSDFs at
the intermediate frame time. The results show that all the
comparison methods reflect topological changes over time into
the canonical TSDF. Nevertheless, since the incoming depth
is quite noisy, KillingFusion shows significant changes in the
canonical TSDF by large misalignments, leading to instable
live frame reconstruction results. The hierarchical gradient
measurements in the Sobolev space allow SobolevFusion to
reliably cope with topology changes. The proposed recon-
struction framework shows the most clear-cut results thanks
to accurate wrapping. The results demonstrate the significant
advantage of the proposed method in topology changes. As
a level-set-based deformation can handle topological changes,
temporally manipulating reliable TSDF gradients through the
proposed evolutions enables more accurate reconstruction of
dynamic scenes under topology changes.

G. Limitation and Future Work

Although the proposed framework achieved qualified recon-
structions in real-time frame rates, the TSDF representation of
a 3D surface requires as many memories as the voxel volume
size. It may restrict the applicability of the method depending
on the maximum resolutions and computational powers of
devices. However, a sparse [81] or hierarchical [82] structure
representation can help solve the problem because most of
values in a TSDF are truncated (i.e., background).

Moreover, depth-color correspondences obtained from
Microsoft Kinect Azure, one of the latest off-the-shelf depth
sensors, show incorrect and noisy results, in practice. Some
examples of images, where RGB colors are mapped on the
coordinates of depth map, are depicted in Fig. 17. Colors

Fig. 17. Matched depth-color correspondence examples on the depth map
coordinates in our database captured using one of the latest depth sensors.

on object boundaries and rapidly moving components such
as human hands are notoriously unreliable. Therefore, except
when using clear depth maps obtained from the public data-
base [83] or employing multi-depth cameras [38], [39], using
color features for TSDF deformation does not help reconstruct
more accurately for our cases. Nevertheless, we believe that
the proposed framework contributes to the advancement of the
incremental 3D surface reconstruction field by accounting for
a reliable implicit function.

V. CONCLUSION

We presented a novel non-rigid 3D reconstruction pipeline
from a single depth camera in real-time. An SDF approximated
from a depth map is inaccurate except for values near a 3D
surface, yielding inaccurate warping during the deformation
step. The fusion procedure, a linear weighted summation
between SDFs, generates artifacts, making 3D reconstruction
unstable in time. We tackled the problems by introducing two
significant gradient evolution methods for TSDF refinement
and fusion with the reconstruction pipeline. Inaccurate TSDF
values from a depth map can be recovered in a few iterations
by propagating the TSDF values from the surface direction,
leading to a more accurate deformation. The level-set evolution
for the TSDF fusion helps the SDF to be manipulated reliably
in time by propagating TSDF gradients with distance regular-
ization. Our methods are fully parallelizable and can easily be
used with previous reconstruction pipelines. We believe that
our contribution provides a step toward real-time 3D surface
reconstruction and tracking applications in everyday life.
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