
Implementing CUDA Unified Memory in the
PyTorch Framework

Jake Choi
Department of Computer Engineering

Seoul National University
Seoul, Korea

kidcoder@snu.ac.kr

Heon Young Yeom
Department of Computer Engineering

Seoul National University
Seoul, Korea

yeom@snu.ac.kr

Yoonhee Kim
Department of Computer Science
Sookmyung Woman’s University

Seoul, Korea

yulan@sookmyung.ac.kr

Abstract—Popular deep learning frameworks like PyTorch
utilize GPUs heavily for training, and suffer from out-of-memory
(OOM) problems if memory is not managed properly. In this
paper, we propose a modification that utilizes CUDA Unified
Memory (UM) to expand GPU memory to the available host
memory space so that practicality for the programmer can
increase, and OOM memory errors will not result for any
workload. We also pinpoint performance issues that result
from our modifications to the framework, and outline future
plans like reducing redundant memory copies, prefetching, and
memory advising techniques to improve upon our design. Our
implementation shows that PyTorch UM performance overheads
are minimal when the data footprint is below GPU memory
capacity.

Index Terms—CUDA, Unified memory, PyTorch, framework

I. INTRODUCTION

Deep learning (DL) training is widely performed in graphics

processing units (GPU) because of greater performance and

efficiency over using central processing units (CPU) [1]. Even

though each individual GPU core may not be as powerful as

a CPU core, GPUs compensate by having a greater quantity

of cores allowing for more parallelism. In order to efficiently

utilize GPUs for computation, entire DL models and data need

to be copied into the GPU memory before training begins.

With increasingly larger models and sample mini-batches, this

can take up a significant amount of memory [2]. However,

even state-of-the-art GPUs have limited memory (e.g. 12GB

for NVIDIA’s Titan XP and 16GB for NVIDIA’s V100 GPU)

compared to host memory. Therefore, if no consideration is

given to the memory usage of a DL training process in any

particular framework (e.g. TensorFlow [13], PyTorch [27]),

then out-of-memory (OOM) faults could occur and the entire

process would fail.

In this paper, in order to rectify the OOM problem, we

present a case study to investigate the effects of implementing

CUDA Unified Memory (UM) [18] on the PyTorch frame-

work. Unified memory allows the virtualization of GPU and

CPU host memory to become a single address space, and

performs background data migration from GPU to CPU host

memory and vice versa when GPU memory is insufficient to

This work was supported by the National Research Foundation
of Korea(NRF) grant funded by the Korea government(MSIT) (No.
2021R1A2C1003379). (Corresponding Author: Yoonhee Kim).

store data. This allows for automatic out-of-core computation

on widely-used DL frameworks with no modification to user

code. As far as we know, few research in literature have

investigated the specific effects of implementing CUDA UM

on PyTorch. The rest of this paper is organized as follows.

Section II provides related work, background knowledge about

CUDA UM, PyTorch, and insights about our design. Section

III discusses the experimental setup and the implementation

of UM on PyTorch. Section IV evaluates the performance of

PyTorch with UM on the machines and the current limitations

of the implementation. Section V concludes this work with

future insight.

II. RELATED WORK AND BACKGROUND

A. Related Work

Several existing methods in literature are used to over-

come OOM limitations by reducing memory consumption.

Some methods use lower-precision floating points [3], [4]

or compression [5], [6] in the parameters of the models.

However, such methods influence the accuracy of the model

and require lots of manual parameter tuning. Other methods

involve deletion of intermediate activation tensors after the

forward pass, and recomputation [7] when needed during

the backwards pass, but this affects the performance of the

model because of the trade-off of memory space to additional

compute cycles and does not work well for large models where

intermediate activation tensors cannot be easily recomputed.

Additionally, for both of these methods mentioned, manual

intervention is needed by the programmer.

Swapping out model tensors from host and GPU memory

is another technique used in recent years to reduce the mem-

ory footprint of models. vDNN [8] is a run time memory

management solution, prototyped as a layer above cuDNN

[12] that reduces average GPU memory usage by releasing

intermediate feature maps from GPU memory if no reuse is

required, or offloads them to CPU memory if further reuse

exists but is not immediately required. vDNN++ [9] extends

upon the previous work by performing asynchronous transfer

of feature maps, additional heuristics to address memory

fragmentation, and usage of compression to reduce the pinned

main memory footprint. SuperNeurons [11] is a dynamic

GPU memory scheduling runtime for training deep non-linear

20

2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)

978-1-6654-4393-7/21/$31.00 ©2021 IEEE
DOI 10.1109/ACSOS-C52956.2021.00029

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
on

om
ic

 C
om

pu
tin

g
an

d
Se

lf-
O

rg
an

izi
ng

 S
ys

te
m

s C
om

pa
ni

on
 (A

CS
O

S-
C)

 |
 9

78
-1

-6
65

4-
43

93
-7

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AC
SO

S-
C5

29
56

.2
02

1.
00

02
9

Authorized licensed use limited to: Sookmyung Womens University. Downloaded on May 18,2022 at 02:17:04 UTC from IEEE Xplore. Restrictions apply.

neural networks. It uses memory techniques to dynamically

analyze and offload tensors of each convolution layer of a

DNN. These solutions only swap out specific activation tensors

which are determined through manual heuristics, and are

limited to a specific subset of the entire data residing in GPU

memory. Furthermore, their implementations are all built as

separate prototype frameworks used to compare against widely

used production-level frameworks like Torch [14], TensorFlow,

Caffe [15], or MXNet [16].

Dataflow graphs generated from DNN computation struc-

tures also provide knowledge to overlap computation with

communication, allowing for minimization of performance

overhead. SwapAdvisor [2] uses Genetic Algorithm [17] and

a static dataflow graph with no control-flow primitives to find

the optimal tensor swapping strategy. It also takes into consid-

eration the GPU operator scheduling, and memory allocation.

However it requires a static dataflow graph, which is not

used by frameworks like PyTorch or TensorFlow eager mode

and only works with a single GPU. ZeRO-Offload [20] is a

GPU-CPU hybrid DL training library based on PyTorch that

allows heterogeneous GPU and CPU training and swapping

of data across memory spaces to train huge models with

over 13 billion parameters on a single GPU. It uses a static

dataflow graph to partition the model between the CPU and

GPU devices, and requires modification of application level

user code to use the library. While all of the above outlined

methods optimize performance in terms of communication

to computation cost, all rely on manual awareness of GPU

memory usage on the part of the programmer and do not really

focus on the actual framework being used.

B. CUDA Unified Memory

Unified Memory allows for the oversubscription of memory

in GPU applications. Kernels running in the GPU can access

data allocated with cudaMallocManaged even though the

data is allocated on the host side. The order of operations that

happens when such memory allocated on the CPU is accessed

by the GPU is the following: 1) Allocate new pages on the

GPU 2) Unmap old pages on the CPU 3) Copy from the

CPU to the GPU 4) Map new pages on the GPU 5) Free

old CPU pages. When Pascal and Volta GPUs access a non-

resident page, the GPU generates a fault message and locks

the translation lookaside buffer (TLB) for the corresponding

SM, which stalls any future translations until all page faults

are resolved [23]. Duplicate fault messages for the same page

can occur forming a page fault group. Driver fault handling

to process and remove duplicate page faults, update CPU

and GPU mapping and transfer data takes a lot of overhead.

Despite the added benefit of memory over-subscription and

elimination of explicit programmer effort, UM has been criti-

cized as being slow due to excessive page fault handling [22].

Unified Memory tested on a set of different benchmarks like

CUDA SDK’s Diffusion3D Benchmark, Parboil Benchmark

Suite and Matrix Multiplication ported on UM showed an

average performance loss of 10% [24].

C. Choosing PyTorch as the Framework

PyTorch is a relatively new Python library that is popular in

the research community, and is growing fast. As of the time

of this writing, its main competitor is Tensorflow, and both

frameworks are the most popular frameworks being used for

deep learning. PyTorch performs immediate execution of dy-

namic tensor computations with automatic differentiation and

GPU acceleration. Other frameworks like Caffe, Tensorflow, or

Theano [28] construct a static dataflow graph that represents

the complete computation and is then repeatedly applied to

batches of data. The static dataflow approach may be used to

increase performance and scalability, but comes at the cost of

ease of use, ease of debugging, and flexibility on the types of

computation that can be represented. PyTorch uses dynamic

eager execution, and still retains performance comparable to

the fastest deep learning libraries. It is a lot easier to make

flexible custom models that would be harder to express in

other frameworks, and many of the inputs can be flexibly

changed during runtime. Currently, Tensorflow has released

eager execution mode on Tensorflow 2.0, making it more

like PyTorch. However, programmers would have to change

a lot of the existing Tensorflow 1.x code in order to shift

to the newer versions, which leads to backward compatibility

issues. Tensorflow has more production level, industry use

cases where implementation speed is more of a factor than

flexibility. Generally speaking, PyTorch is more research-

oriented, Python-friendly, intuitive, and easy to learn than the

original Tensorflow. The amount of research citing the PyTorch

framework has grown a lot in the past few years and is still

currently growing at a fast pace. These are the reasons why we

chose PyTorch as the framework to implement CUDA Unified

Memory.

Currently in research, we have not seen CUDA UM im-

plemented in PyTorch. The main reason for this is that even

though UM provides increased productivity for the program-

mer and ease of use by solving the OOM problem, the

PyTorch developers think that UM will have too much of

a performance overhead. Therefore other explicit methods of

memory management that we already outlined in Section I

are used instead. For graph neural network (GNN) use cases,

a unified tensor implementations for PyTorch exist [30]. Such

work adds certain new functions to the PyTorch framework

to allow programmers to declare tensor objects as a ”unified”

object. However, this object is not truly using CUDA UM

in the form of a unified virtual memory space because of

performance reasons. Graph objects have poor temporal and

spatial locality, and therefore the ”unified” object in this case

is using zero-copy memory where the object is pinned in

host memory and directly mapped to the GPU device. This is

because certain graph tensors are not accessed frequently even

though they make take up a lot of memory space. Additionally,

the programmer has to be aware of such objects and declare

them manually in the code as unified objects using a different

syntax in order to take advantage of this feature. This approach

is not what we are aiming for in this paper. Our goal is to allow

21

Authorized licensed use limited to: Sookmyung Womens University. Downloaded on May 18,2022 at 02:17:04 UTC from IEEE Xplore. Restrictions apply.

the programmer to be completely unaware of such memory

management details, and still not encounter OOM problems

while not sacrificing too much performance by utilizing CUDA

UM in the PyTorch framework itself.

D. Design Differences with Other Frameworks

OC-DNN [29] is an out-of-core DNN framework that takes

advantage of the CUDA UM features in Pascal and newer

architecture GPUs. It uses UM communication primitives and

optimizations like prefetching and advising to avoid GPU

page faults in the Caffe framework. It provides comparative

performance for regular DNNs which fit into GPU memory,

and provides a 1.9x speedup compared to the pre-existing

out-of-core methods that do not utilize UM for the Caffe

framework. The implementation also removes over 3,000 lines

of redundant Caffe code that must be changed as CUDA UM is

implemented instead of explicit memory copies. However this

work implements UM on the Caffe framework based on C++,

which has largely been inactive for the past couple of years.

Caffe is also limited in the types of deep learning models that

it can effectively deploy. In fact, a successor, Caffe2 [31] was

built on top of the original Caffe in order to increase support

for more non-vision use case models, distributed computation,

and mobile deployment. It also merged with the PyTorch

framework in 2018. Now, the original Caffe has largely been

deprecated after the merge. PyTorch now holds the entire

Caffe2 code base and has the additional benefits of being

more flexible with prototype models and is more research-

oriented. Therefore it makes sense that we focus on the latest

DL framework.

In the design of OC-DNN, file access (obtaining the training

samples from disk) is optimized by replacing all the file-to-

host (F2H) buffer transfers and host-to-GPU (H2D) transfers

with a single unified file-to-managed (F2M) transfer. OC-DNN

converts D2D copies that occur during the layer stage using the

Layer class to UM accesses. OC-DNN improves upon these

D2D data dependencies between kernels by using prefetching

and advising to evict source buffers in the forward pass to host

memory and prefetch data back in the backward pass to reduce

GPU faults. Such optimizations can also be applied to PyTorch

to work for intermediate data, but would be more complex

to implement in the backend CUDA kernel management.

Finally, Caffe uses forward_cpu(), backward_cpu(),

forward_gpu(), backward_gpu() member functions to

deal with CPU and GPU training separately. OC-DNN unifies

the functions into one type and removes redundant code.

Because PyTorch uses Python, the syntax is more general

(e.g. .to(’cuda’)), and the framework is more complex

and automated in dealing with heterogeneous architectures.

Therefore the modifications required are less straightforward.

III. IMPLEMENTATION AND EXPERIMENTAL SETUP

We implemented CUDA UM in the core c10 CUDA library

inside the PyTorch framework. C10 is similar to ATen (tensor

mathematical operator library), but contains more recent core

PyTorch code. Figure 1 shows a simplified view of the PyTorch

Python Program

torch, torch.autograd, torch.nn,
torch.multiprocessing, torchutils

ATen or C10 Tensors

C++ libtorch

CPU

PyTorch
torch.JIT

JIT Execution

JIT Extensions

Backends Backends

Dynamic Dispatcher

CUDA XLA

Fig. 1. Brief PyTorch Architecture

architecture. We specifically modified the CUDA caching

allocator in the CUDA backend of the c10 library. The caching

allocator is used to speed up memory allocations and also

allows fast memory deallocations without device synchroniza-

tions. We specifically replaced cudaMalloc calls in the

block allocator with cudaMallocManaged. This ensures

that all GPU device allocations will be made using unified

memory. Then we ran the test program shown in Listing 1

using Python to test if there would be an OOM error. The

program creates a 2D tensor filled with 16 GB of random 4-

byte floating point numbers in the CPU host side, and then

sends a copy to the GPU side. Then it calculates the square

of each number on both the CPU tensor and GPU tensor and

tests for correctness. In our results, the two tensors had equal

results to each other. Listing 1 results in an OOM error in the

unmodified case if the GPU does not have enough memory to

accommodate 16 GB of floating point data.

Simply modifying the GPU device-side memory allocation

mechanism to perform UM allocations is an incomplete imple-

mentation. The PyTorch framework is designed to be flexible

by utilizing a dispatcher mechanism to allow several backends

(CPU, GPU, XLA, or other devices) and data types to be used

for identical operators, through function tables, and dispatcher

keys used to distinguish between different overloaded versions

of the same function. This allows the flexibility of Python

application code to work the same across CPU and GPU, with

minimal programmer effort. In order to be a more complete

implementation of UM, tensors allocated on the CPU backend

also need to use cudaMallocManaged from the CUDA

library and explicit memory copies from device to host or

vice versa need to be eliminated. Currently, when PyTorch

functions like .to(’cuda’) are used, copies of the same

tensor data are maintained on both host and GPU, leading

to redundant host memory usage on x86 systems when GPU

memory is oversubscribed. We will deal with these issues in

future work.

22

Authorized licensed use limited to: Sookmyung Womens University. Downloaded on May 18,2022 at 02:17:04 UTC from IEEE Xplore. Restrictions apply.

import torch
x = torch.rand(100000,40000)

y = x.to(’cuda’)

y.pow_(2)
x.pow_(2)

print(torch.equal(x,y.to(’cpu’)))

Listing 1. Example code to oversubscribe GPU memory on PyTorch

When profiling the results from Listing 1 using nvprof [25]

after making the UM modifications to PyTorch code, we notice

that OOM errors disappear even though GPU memory usage

is maximized by checking nvidia-smi. Figure 2 shows a

simplified diagram of what NVIDIA Visual Profiler [26] out-

puts when Listing 1 is executed. In the actual profiled results,

18 additional PyTorch CUDA kernels are also executed, but

have very low significance that they are omitted from Figure

2. The cudaMemcpyAsync operation from host-to-device

overlaps with the CUDA driver page faults and data migration

caused by UM. This is because data explicitly copied to the

device exceeds available device memory. In this situation, the

CUDA driver forces the data that is least recently copied to

be sent back to host memory due to oversubscription. After

memory copy is complete, the main mathematical operation

kernel (PoW) is executed. Page faults and data migration are

shown in bars above the kernel stream. Each bar represents

groups of many page faults or data migrations occurring during

that period.
When tensor sizes are larger than a certain amount (in

this case about 2 GB), PyTorch automatically divides the

vectorized kernel into smaller chunks by invoking a loop to

call the CUDA kernel repeatedly to process different parts

of the tensor. In this case the PoW kernel is invoked a total

of 8 times, and each invocation takes approximately 800 ms

in duration on average. During this period, large amounts of

background GPU page faults occur causing more delay in

kernel execution time. When the tensor was able to completely

fit into GPU device memory by reducing the data size from

16 GB to 1.6 GB, a single PoW kernel executed and had a

duration of about 7 ms. This means that if GPU device memory

is insufficient, there is an additional overhead of roughly 6330

ms due to GPU page faults.

GPU Page Fault
Data Migration (HtoD)

GPU Page Fault
Data Migration (HtoD)

pow

Time (30.46s)

Memcpy HtoD (Async) Memcpy DtoH (Async)
Data Migration (HtoD)

GPU Page Fault GPU Page Fault

pow pow pow pow pow pow pow

Approx. 800ms * 8 = 6.4s

Data Migration (DtoH) Data Migration (DtoH) Data Migration (DtoH)

Overlap

Fig. 2. Profiling UM page faults with nvvp (16 GB data oversubscribed)

When PyTorch creates CUDA kernels that access individual

elements in a tensor, it does not consider the physical location

of the accessed data. If this information is known advance,

UM optimization techniques can be applied like prefetching

using cudaMemcpyAsync or cudaMemAdvise, in order

to provide preferences for data placement in certain address

ranges. In the Listing 1 example, the PoW kernels access

the tensor data in a sequential manner from the beginning.

However data has already been migrated to host memory

due to oversubscription. Therefore we prefetched a portion

of the data to the GPU device before launching the ker-

nels (shown in Figure 3), and were able to save about 3

seconds in total execution time. The time spent in kernels

is reduced from 6.4s to 1.56s and additional overhead from

cudaMemPrefetchAsync to fetch data from the host side

is 1.86s. Page faults do not occur when the first few PoW

kernels are executed because data already resides in device

memory after the prefetch. Early kernels took as little as 9

ms to execute. Kernels that accessed the latter portion of the

data took longer because they had to evict existing device GPU

data and replace it with newer data from the host. Overlapping

prefetching with kernels and removing explicit copies which

wrongly send immediately needed data to host memory can

further optimize such scenarios.

GPU Page Fault
Data Migration (HtoD)
GPU Page Fault

Data Migration (HtoD)

Time (27.89s)

Memcpy HtoD (Async) Memcpy DtoH (Async)
Data Migration (HtoD)

GPU Page Fault GPU Page Fault

pow pow

Data Migration (DtoH) Data Migration (DtoH) Data Migration (DtoH)

Overlap

cudaMemPrefetchAsync pppppp

1.56s1.84s

Fig. 3. Profiling UM after prefetch optimization (16 GB data oversubscribed)

The experimental setup is a single server machine equipped

with 4 NVIDIA Titan XP GPUs. Each GPU has 12 GB of

memory available. The server has a total of 125 GB of host

memory available. We use pytorch 1.9.0 in developer mode

for implementation purposes, and also use Anaconda [36] to

shift between our changes and the base case. Our workload

that we run to test actual execution time in our evaluation is

the PyTorch ImageNet Training example which has a lot of

available DNNs for training vision like Alexnet [32], Resnet

[33], and VGG [34]. The dataset used is the Tiny Imagenet

200 [35].

IV. EVALUATION

We executed the Resnet-18 workloads with batch size 256

and 512 with and without UM and profiled the results using

nvprof. Training using built-in deep learning models along

with the Tiny Imagenet dataset in PyTorch invokes a vast

number of cuDNN, GEMM, and backend CUDA operator

kernels. We limited the number of iterations in the PyTorch

Imagenet dataset to 5 in one epoch and ended the training

afterwards because the training pattern does not change. Figure

4 shows the execution time for the workloads. We notice that

the execution time for PyTorch with UM is similar to the base

23

Authorized licensed use limited to: Sookmyung Womens University. Downloaded on May 18,2022 at 02:17:04 UTC from IEEE Xplore. Restrictions apply.

execution time for all batch sizes which fit in GPU memory.

Once GPU oversubscription occurs, the base case results

in an OOM because the program fails to cudaMalloc.

The bar is missing from the graph for the cases where this

occur. One exception is that UM-Resnet-18 BS 512 takes

much longer than Resnet-18 BS 512 because the GPU is

oversubscribed. The UM implementation causes slightly more

memory to be allocated on the GPU resulting in an unintended

oversubscription of the GPU. In addition to these factors,

using UM also increases CPU host memory allocation by the

equivalent amount of data transferred to the GPU because of

redundant copies which we mentioned in Section III.

Table I shows the top 5 kernels that take up the most time

during execution of the profiled Resnet-18 workloads for 5

training iterations. When identical workloads are run, the total

number of kernel invocations does not change. Application of

UM changes the number and order of kernel invocations which

take up the most time. Also, when memory is oversubscribed,

the total amount of kernels increases significantly compared

to the non-UM case with the same batch size. Even when

limited to only 5 total iterations (an actual training phase

would contain thousands of iterations with many epochs),

total program execution time increases significantly and kernel

overhead is also greatly increased. The last row shows the

oversubscribed case, in which total execution time almost

doubles from 27.1s to 50.68s and compute kernel time more

than triples from 11.58s to 36s. This is because the kernels

are not aware of the location of the intermediate data and are

stalled. Even though it is not shown in the table, total compute

utilization (percentage of time spent in kernels divided by total

session time) increases from 42.4% to 67.2% from the base

case to the oversubscribed case.

TABLE I
PROFILING KERNEL INVOCATIONS BY COMPUTE TIME FOR EACH MODEL

Top 5 Kernel Invocations Per Model
Kernel Name Calls (Time) %

maxwell scudnn wi... 207 (871ms) 12.6%
Batch Size 256 vector elementwise ker... 884 (592ms) 8.6%

Resnet-18 cudnn::bn fw inf... 800 (486ms) 7.1%
(20.76s) maxwell gcgemm 32... 360 (410ms) 6.0%

maxwell scudnn 128... 46 (337ms) 4.9%
Total 10449 (6.89s) 100%

maxwell scudnn wi... 207 (913ms) 9.6%
Batch Size 256 cudnn::cnn::im2col4d... 22 (750ms) 7.9%
Resnet-18-UM maxwell gcgemm 32... 354 (669ms) 7%

(24.79s) vector elementwise ker... 782 (493ms) 5.2%
maxwell scudnn 128... 800 (485ms) 5.1%

Total 10339 (9.5s) 100%
maxwell gcgemm 32... 667 (806ms) 7.0%

Batch Size 512 vector elementwise ker... 544 (754ms) 6.5%
Resnet-18 maxwell scudnn wi... 76 (691ms) 6%

(27.1s) maxwell scudnn wi... 91 (600ms) 5.2%
maxwell scudnn 128... 26 (576ms) 5%

Total 9057 (11.58s) 100%
vector elementwise ker... 102 (5.6s) 15.8%

Batch Size 512 cudnn::bn bw 1C11... 120 (2.79s) 7.8%
Resnet-18-UM at::native:: GLOBAL... 26 (2.62s) 7.3%

(50.68s) maxwell scudnn wi... 126 (2.57s) 7.2%
maxwell cgemm 32... 10973 (2.55s) 7.1%

Total 18435 (36s) 100%

Fig. 4. Comparing execution time results for Resnet-18 and Resnet-50 on
PyTorch with and without UM for different batch sizes

In Figure 5, we notice that there is no evidence

of data migration between host and device, unlike

Figure 2 and 3. Individual kernel execution times for

certain kernels have increased significantly, such as

vector_elementwise_kernel (shown in the figure

as ZN2at6n) taking a whopping 5.6s of time in only 5

iterations. Large amounts of intermediate data are created

from the tensors already located in device memory which

causes data migration activity to not show up the profiler.

This is similar to the situation in Figure 2. Each iteration

further exacerbates execution time because the same pattern

is repeated. In addition to this, further analysis shows that

data loaded through batches is also pinned in host memory

using cudaHostAlloc and is read directly from the GPU

without migration. In future work, redundant explicit data

transfers that UM does not require need to be eliminated.

Fig. 5. Visual Profiling Resnet-18-UM with 512 batch size

V. CONCLUSION AND FUTURE WORK

In this paper, we have implemented UM in the PyTorch

framework in order to remove the OOM memory problem at

the bare minimum. We have noticed that under workloads that

fit inside GPU memory, performance has not changed much.

24

Authorized licensed use limited to: Sookmyung Womens University. Downloaded on May 18,2022 at 02:17:04 UTC from IEEE Xplore. Restrictions apply.

However with workloads that are oversubscribed, performance

has dropped. We propose in future work to remove all re-

dundant memory copies and operations and implement UM

allocation in the CPU side in order to make the framework

more aware of UM. We have shown evidence that performance

overheads during oversubscription can be alleviated by using

memory optimization techniques like cudaMemAdvise and

cudaMemPrefetchAsync. We propose to improve upon

this to apply more general memory optimization techniques

to work at appropriate situations where we can predict the

data access patterns of kernels. We also want to effectively

utilize UM across multiple GPUs when parallel processing is

performed under the framework.

REFERENCES

[1] B. Ebubekir and D. Banu, 2018. Performance Analysis and CPU vs GPU
Comparison for Deep Learning. 1-6. 10.1109/CEIT.2018.8751930.

[2] Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. SwapAdvisor: Pushing
Deep Learning Beyond the GPU Memory Limit via Smart Swapping.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’20). Association for Computing Machinery, New York, NY,
USA, 1341–1355. DOI:https://doi.org/10.1145/3373376.3378530

[3] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. 2015. Deep Learning with Limited Numerical Precision.
In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37 (ICML’15). JMLR.org,
1737–1746.

[4] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M. Aamodt,
Natalie Enright Jerger, and Andreas Moshovos. 2016. Proteus: Ex-
ploiting Numerical Precision Variability in Deep Neural Networks. In
Proceedings of the 2016 International Conference on Supercomputing
(ICS’16). Association for Computing Machinery, Article 23.

[5] Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal,Wei
Zhang, and Kailash Gopalakrishnan. Adacomp: Adaptive Residual Gra-
dient Compression for Data-parallel Distributed Training. In AAAI
2018.

[6] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep
Gradient Compression: Reducing the Communication Bandwidth for
Distributed Training. arXiv preprint arXiv:1712.01887, 2017.

[7] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.
Training Deep Nets with Sublinear Memory Cost. arXiv preprint
arXiv:1604.06174 (2016).

[8] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and
Stephen W. Keckler. 2016. vDNN: Virtualized Deep Neural Networks
for Scalable, Memory-Efficient Neural Network Design. In The 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO’49). IEEE Press, Article 18.

[9] Jain, A., Phanishayee, A., Mars, J., Tang, L., and Pekhimenko, G.
Gist: Efficient data encoding for deep neural network training. In
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA) (2018), IEEE, pp. 776–789.

[10] S. S.B., A. Garg and P. Kulkarni, ”Dynamic Memory Management for
GPU-Based Training of Deep Neural Networks,” 2019 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), 2019,
pp. 200-209, doi: 10.1109/IPDPS.2019.00030.

[11] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen
Leon Song, Zenglin Xu, and Tim Kraska. 2018. Superneurons: Dynamic
GPU Memory Management for Training Deep Neural Networks. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’18).

[12] NVIDIA, “cuDNN: GPU Accelerated Deep Learning,” 2016.

[13] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., et al. Tensorflow: A system for
large-scale machine learning. In OSDI (2016), vol. 16, pp. 265–283.

[14] Collobert, R., Bengio, S., and Mariéthoz, J. Torch: a modular machine
learning software library. Tech. rep., Idiap, 2002.

[15] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., and Darrell, T. Caffe: Convolutional architecture for
fast feature embedding. In Proceedings of the 22nd ACM international
conference on Multimedia (2014), ACM, pp. 675–678.

[16] Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu,
B., Zhang, C., and Zhang, Z. Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274 (2015).

[17] Lawrence Davis. 1991. Handbook of genetic algorithms. (1991).
[18] NVIDIA. Beyond GPU Memory Limits with Unified Memory on Pas-

cal, 2016. URL https://developer.nvidia.com/blog/beyond-gpumemory-
limits-unified-memory-pascal/.

[19] A. Awan, C. Chu, H. Subramoni, X. Lu, and D. Panda. 2018. OCDNN:
Exploiting Advanced Unified Memory Capabilities in CUDA 9 and
Volta GPUs for Out-of-Core DNN Training . In 25th IEEE International
Conference on High Performance Computing, Data, and Analytics
(HiPC).

[20] K. V. Manian, A. A. Ammar, A. Ruhela, C.-H. Chu, H. Subramoni, and
D. K. Panda. 2019. Characterizing CUDA Unified Memory (UM)-Aware
MPI Designs on Modern GPU Architectures. In Proceedings of the 12th
Workshop on General Purpose Processing Using GPUs (GPGPU ’19).
Association for Computing Machinery, New York, NY, USA, 43–52.
DOI:https://doi.org/10.1145/3300053.3319419

[21] Ren, J., Rajbhandari, S., Aminabadi, R.Y., Ruwase, O., Yang, S., Zhang,
M., Li, D., & He, Y. (2021). ZeRO-Offload: Democratizing Billion-Scale
Model Training. ArXiv, abs/2101.06840.

[22] Knap, M., Czarnul, P. Performance evaluation of Unified Memory with
prefetching and oversubscription for selected parallel CUDA applica-
tions on NVIDIA Pascal and Volta GPUs. J Supercomput 75, 7625–7645
(2019). https://doi.org/10.1007/s11227-019-02966-8

[23] Sakharnykh N (2017) Maximizing unified memory performance in cuda.
https://devblogs.nvidia.com/maximizing-unified-memory-performance-
cuda/

[24] Li W, Jin G, Cui X, See S (2015) An evaluation of unifed memory
technology on nvidia gpus. In: 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pp 1092–1098.
https://doi.org/10.1109/CCGrid.2015.105

[25] “NVIDIA Profiler nvprof”, https://docs.nvidia.com/cuda/profiler-users-
guide/index.html.

[26] “Nvidia Profiler User’s Guide.” https://docs.nvidia.com/cuda/profiler-
users-guide/.

[27] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., . . . Chintala, S. (2019). PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural Information
Processing Systems 32 (pp. 8024–8035). Curran Associates, Inc. Re-
trieved from http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

[28] Theano Development Team. Theano: A Python framework for fast com-
putation of mathematical expressions. arXiv e-prints, abs/1605.02688,
May 2016.

[29] A. A. Awan, C. Chu, H. Subramoni, X. Lu and D. K. Panda, ”OC-DNN:
Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta
GPUs for Out-of-Core DNN Training,” 2018 IEEE 25th International
Conference on High Performance Computing (HiPC), 2018, pp. 143-
152, doi: 10.1109/HiPC.2018.00024.

[30] Seungwon Min, Kun Wu, Sitao Huang, Mert Hidayetoglu, Jinjun Xiong,
Eiman Ebrahimi, Deming Chen, Wen-Mei W. Hwu: PyTorch-Direct: En-
abling GPU Centric Data Access for Very Large Graph Neural Network
Training with Irregular Accesses. CoRR abs/2101.07956 (2021)

[31] “Caffe2,” https://caffe2.ai/.
[32] Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with

deep convolutional neural networks. In Advances in Neural Information
Processing Systems; Curran Associates, Inc.: New York, NY, USA,
2012; pp. 1097–1105.

[33] He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

[34] Simonyan, K.; Zisserman, A. Very deep convolutional networks for
large-scale image recognition. arXiv 2014, arXiv:1409.1556.

[35] Barnes, Z. (2017). Techniques for Image Classification on Tiny-
ImageNet.

[36] Anaconda Software Distribution. (2020). Anaconda Documentation.
Anaconda Inc. Retrieved from https://docs.anaconda.com/

25

Authorized licensed use limited to: Sookmyung Womens University. Downloaded on May 18,2022 at 02:17:04 UTC from IEEE Xplore. Restrictions apply.

		2021-11-16T11:00:46-0500
	Certified PDF 2 Signature

