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Abstract— We present a low-drift visual odometry algorithm
that separately estimates rotational and translational motion
from lines, planes, and points found in RGB-D images. Previous
methods estimate drift-free rotational motion from structural
regularities to reduce drift in the rotation estimate, which is the
primary source of positioning inaccuracy in visual odometry.
However, multiple orthogonal planes are required to be visible
throughout the entire motion estimation process; otherwise,
these VO approaches fail. We propose a new approach to
estimate drift-free rotational motion jointly from both lines and
planes by exploiting environmental regularities. We track the
spatial regularities with an efficient SO(3)-manifold constrained
mean shift algorithm. Once the drift-free rotation is found, we
recover the translational motion from all tracked points with
and without depth by minimizing the de-rotated reprojection
error. We compare the proposed algorithm to other state-
of-the-art visual odometry methods on a variety of RGB-D
datasets (including especially challenging pure rotations) and
demonstrate improved accuracy and lower drift error.

I. INTRODUCTION

Visual odometry (VO) algorithms estimate the six degrees

of freedom (DoF) rotational and translational camera motion

from a sequence of images. They are a fundamental tool for

applications from augmented reality to autonomous robots.

Many VO and Visual Simultaneous Localization and Map-

ping (V-SLAM) approaches, which jointly estimate rotational

and translational motion, have shown promising results.

However, these approaches cannot avoid drift in the rotation

estimate without SLAM techniques (loop closure, global 3D

map construction), resulting in large drift errors because

the main source of positional inaccuracy in VO is rotation

estimation error [1], [2], [3]. Many visual navigation methods

are also unstable for pure, on the spot rotations [4], [5].

Our previous work [6] introduced Orthogonal Plane-based
Visual Odometry (OPVO) to address these issues. OPVO ex-

ploits orthogonal planar structures to determine the absolute,

drift-free orientation of an RGB-D camera. Based on the

absolute camera orientation, it finds the optimal translation

by minimizing the de-rotated reprojection error from tracked

points with depth information. Although OPVO drastically

reduces the drift error, there are still two key limitations:

OPVO requires at least two orthogonal planes to be visible

at all times, and point features with depth information. Also,

the experimental evaluation in [6] was performed mainly on

synthetic RGB-D datasets.
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Fig. 1. Example of a structured environment exhibiting strong orthogonal
spatial regularities. For drift-free and stable rotation estimation, we exploit
line and plane primitives together to recognize the structural regularities
with respect to an RGB-D camera.

To address these issues, we propose Line and Plane
based Visual Odometry (LPVO), a novel VO algorithm that

exploits line and plane primitives jointly to recognize the

spatial regularities of orthogonal structured environments

(see Fig. 1). Lines from RGB images and surface normal vec-

tors from depth images are simultaneously used to perceive

environmental regularities accurately and stably. LPVO can

track drift-free rotational motion while at least a single plane

and a pair of lines parallel to the Manhattan world (MW) axes

are visible. Furthermore, we utilize point features without

depth information when we recover the optimal translational

motion. Extensive evaluations show that LPVO produces

the lowest drift error compared to other state-of-the-art VO

methods, including OPVO [6]. The main contributions of this

paper are:

• We propose a novel approach to estimate absolute and

drift-free rotational motion jointly from both lines and

planes by utilizing environmental regularities.

• We newly use tracked points with no depth information

to recover the 3-DoF translation.

• We evaluate the VO algorithms on the TUM [7] and

TAMU [8] RGB-D datasets, as well as a new dataset

traversing a large building, showing low drift for LPVO.

II. RELATED WORK

VO and V-SLAM methods are being actively researched

to lower the rate of VO drift. From the vast literature in VO

and V-SLAM, we review a subset of state-of-the-art contri-

butions, existing VO methods with motion decoupling, and

studies specifically focusing on accurate rotation estimation.

VO algorithms can be classified into indirect, direct, and

hybrid methods depending on the type of visual information
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used [4]. The most widely used indirect methods, point

feature-based methods, have proven successful for 6-DoF

motion estimation [9], [10], [11]. In [10], low drift error is

achieved using salient feature points both with and without

depth information. The recent ORB-SLAM2 [11] shows

outstanding motion estimation performance with monocular,

stereo, and RGB-D cameras using the same ORB features

for all SLAM tasks. To reduce drift error, however, ORB-

SLAM2 relies heavily on SLAM techniques (loop closing,

relocalization, local 3D map reuse), which require substantial

memory and computation. Direct VO methods [12], [13],

[4] estimate 6-DoF camera motion by minimizing the pho-

tometric error between image frames. But they suffer from

drift caused by unmodeled visual effects such as irregular

illumination changes, and fare poorly at tracking on-the-spot

rotations.

Some research has estimated rotational and translational

motion separately. Rotation is estimated using epipolar ge-

ometry, and the translation is recovered with triangulated

3D points [14]. [15] splits camera motion into the separate

rotation and translation estimates using distant and close

points with a disparity map and the camera speed, while [16]

estimates rotation and translation separately with carefully

selected features. These VO methods, however, cannot esti-

mate drift-free rotation in structured environments because it

is difficult to recognize environmental regularities using point

primitives. To utilize structural information, [17] detects

dominant bundles of parallel lines for rotation and estimates

translation from a 2-point algorithm up to a scale. OPVO [6]

tracks a Manhattan frame (MF) for absolute camera orienta-

tion from surface normal vectors, and recovers translation by

minimizing de-rotated reprojection error with available depth

points. Although these approaches use structural features, no

existing approach uses both lines and planes.

Several studies have more focused on accurate rotation

estimation in structured environments due to the importance

of rotational motion [18]. From the line segments in the

image, [19] estimates the rotational motion by finding or-

thogonal vanishing points (VPs) with a 3-line RANSAC

algorithm. While this method can estimate drift-free rotation

using RGB images only, the performance is sensitive to the

quality of visible lines. [2] derives MF inference algorithms

based on the distribution of the surface normal vectors from

depth images. In [20] and [6], drift-free rotation estimation is

performed with a mean-shift algorithm based on the surface

normal vector distribution. While these methods demonstrate

superior rotation estimation in structured environments, at

least two orthogonal planes must always be visible.

III. BACKGROUND 3D GEOMETRY

A. Gaussian Sphere

A Gaussian sphere is a unit sphere centered on the center

of projection (COP) of a camera, and is a convenient method

to represent geometric elements such as lines and normal

vectors when the camera intrinsic parameters are known. A

line in the image is projected onto the Gaussian sphere as a

great circle (the intersection of the unit sphere and the plane

center of projection 
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Fig. 2. Background 3D geometric relationship between the lines, planes,
and the Gaussian sphere with an orthogonal structure. A vanishing direction
vector is defined by at least two parallel line segments. Each orthogonal
plane and its corresponding normal vector are drawn with the same color.

defined by the line and the COP, see Fig. 2). The great circle

of each line can be expressed as a unit vector in the Gaussian

sphere. Great circles representing parallel lines in the image

intersect at two antipodal points on the Gaussian sphere.

A unit vector from the COP to the intersection point is a

vanishing direction (VD), calculated as the cross product of

the normal vectors of two great circles representing parallel

lines in the image. The three orthogonal VDs defined by the

parallel lines match the orthogonal surface normal vectors of

the planes in a perfect Manhattan world. These vectors form

the basis of a Manhattan frame.

B. Rotation Motion with Vanishing Directions

In Euclidean 3D space, we represent the 6-DoF cam-

era motion as the 4 × 4 rigid body transformation matrix

T ∈ SE(3), composed of the 3-DoF rotational motion

R ∈ SO(3) and the 3-DoF translational motion t ∈ R
3.

A vanishing direction d ∈ R
3 on the Gaussian sphere can

be transformed into d′ by the 6-DoF camera motion as:

d̃′ = T d̃ =

[
R t

01×3 1

] [
d
0

]
=

[
Rd
0

]
(1)

where d̃ =
[
d� 0

]� ∈ P
3 denotes the VD in homogeneous

coordinates. From Eq. (1), we can observe that the VD is

only dependent on the rotational motion of the camera.

IV. PROPOSED METHOD

A. Orthogonal Plane-based Visual Odometry

The proposed Line and Plane based Visual Odometry
(LPVO) method builds on our previous Orthogonal Plane-
based Visual Odometry (OPVO) algorithm [6], which we

summarize briefly (for full details, refer to [6]). OPVO

has two main steps: 1) structural regularities (Manhattan

frame) are tracked to estimate drift-free rotation with a

SO(3)-manifold constrained mean shift algorithm; and 2)

translational motion is recovered by minimizing the de-

rotated reprojection error from tracked points.
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The core of the OPVO rotation estimation is tracking the

Manhattan frame with a SO(3)-manifold constrained mean

shift algorithm based on the tangent space Gaussian MF (TG-

MF) model [21] under the assumption that the MF does

not change too much between the frame-to-frame motion.

Given the density distribution of surface normal vectors

on the Gaussian sphere S
2, OPVO infers the mean of the

surface normal vector distribution around each dominant

Manhattan frame axis through a mean shift algorithm in the

tangent plane R
2 with a Gaussian kernel. The modes found

by the mean shift algorithm are projected onto the SO(3)
manifold to maintain orthogonality, resulting in the absolute

orientation estimate of the camera.

For the translation estimation, OPVO transforms feature

correspondences between consecutive frames into a pure

translation by taking advantage of the drift-free rotation

estimation in the previous step. OPVO recovers the 3-DoF

translational motion of the camera by minimizing de-rotated

reprojection error from the tracked points, which is only

dependent on the translational movement.

Next, we present LPVO, a new approach to exploit line

and plane information jointly for stable and accurate drift-

free rotation estimation even when only a single plane is

visible. For more accurate translation estimation, we addi-

tionally use tracked points without depth information. Fig. 4

shows an overview of the LPVO algorithm.

B. Drift-Free Rotation Estimation with Lines and Planes

We extract the vanishing directions from lines in the

RGB images and surface normal vectors from planes in the

depth images to determine the camera orientation relative

to the Manhattan frame. To extract the vanishing direction

vectors [17], line features over a fixed length (in our experi-

ments, 25 pixels) are detected using LSD [22]. Given the N
detected line features, we compute their corresponding great

circle unit normal vectors. From the N associated normal

vectors, we calculate
(
N
2

)
vanishing directions (one for every

possible pair of lines) by taking the cross product of each

pair of normal vectors.

We also extract surface normal vectors for every pixel

point from the depth image with an RGB-D camera [23].

We pre-process the depth image with a simple box filter

to remove noise in the raw depth data. Unit surface normal

vectors on the Gaussian sphere S
2 are computed by the cross

product of two tangential vectors, which are tangential to the

local surface at the 3D points in the point cloud. In order

to remove noise from the tangential vectors, we average the

surrounding tangential vectors within a certain neighborhood,

which can be done efficiently and quickly using integral

images. For further details, see [23].

We represent the extracted vanishing directions and sur-

face normal vectors as 3D points on the concentric spheres

S
2 in Fig. 3. Purple points on the inner sphere denote the

VDs from lines, and grey points on the outer sphere are

the surface normal vectors from planes, showing that the

two types of directional vectors from lines and planes gather

together around the Manhattan frame axes. The number of

Fig. 3. Clustered lines and segmented planes with inferred MF (left-bottom)
are overlaid on the original RGB image (left-top). We employ the concentric
spheres (right) with different radius to describe the density distribution of
the VDs (purple) and SNs (grey) effectively as 3D points. We can observe
that the directional vectors on the both inner (the VDs from lines) and outer
(the SNs from planes) sphere are distributed together around the MF axes.

the VDs and surface normals is constantly changing by

various factors such as the number of detected lines, invalid

per-pixel depth, and an environmental condition. Although

most of the directional vectors in MW are distributed around

the basis axes of the Manhattan frame, some other points are

not near the Manhattan frame because the real 3D world is

not a perfect and noise-free Manhattan world. Therefore, it

is very important to extract accurate and reliable VDs and

surface normal vectors since the density distribution of the

directional vectors directly affects the accuracy of rotational

motion estimation. LPVO enables MF tracking even when

viewing only a single plane with the help of the lines, unlike

the previous MF tracking methods [20], [21], [6].

C. Translation Estimation with All Tracked Points

We detect and track the feature points with the Good

Features to Track [24] and KLT tracker [25] (for further

details, see [6]). We recover the 3-DoF translational motion

of the camera by minimizing the de-rotated reprojection error

based on tracked points with and without depth information,

which is only dependent on the translational movement. We

start with the mathematical relationship between the frame-

to-frame 6-DoF camera motion and the i-th tracked point

feature [10]:

Xk
i = Zk

i X̄
k
i = RXk−1

i + t

= Zk−1
i RX̄k−1

i + t
(2)

where Xk
i = [Xk

i , Y
k
i , Zk

i ]
� is the 3D coordinates of the

point feature in the camera frame at time k, and X̄k
i =

[X̄k
i , Ȳ

k
i , 1]� is the normalized Xk

i divided by the depth.

The rotation R and the translation t form a rigid body

transformation as explained in Section III-B. For a feature

with known depth at time k − 1, we derive two constraint

equations from the first row of Eq. (2) by substituting Zk
i in

the third row into the first and second rows, respectively:

ri1(t) = (R1 − X̄k
i R3)X

k−1
i + t1 − X̄k

i t3 = 0

ri2(t) = (R2 − Ȳ k
i R3)X

k−1
i + t2 − Ȳ k

i t3 = 0
(3)
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Fig. 4. Overview of LPVO. We estimate the camera rotation (R) by tracking the MF from the vanishing directions and surface normals. Once the absolute
orientation is known, we recover translational motion (t) by minimizing a de-rotated reprojection error based on tracked points with and without depth.

where Rh and th, h ∈ {1, 2, 3} are h-th rows of R and

t respectively. For a feature with unknown depth, we can

derive one constraint equation from the second row of Eq. (2)

by combining all rows to eliminate both Zk
i and Zk−1

i :

r′i(t) = pRX̄k−1
i = 0 (4)

where p =
[−Ȳ k

i t3 + t2 X̄k
i t3 − t1 −X̄k

i t2 + Ȳ k
i t1

]
There are two residual equations for features with depth,

and one residual equation for those without depth. Since

we already estimated the drift-free rotational motion R, the

residual terms in Eqs. (3) and (4) are only a function of the

translational camera motion t. The optimal 3-DoF translation

motion, which minimizes the residual vectors of all tracked

feature points with and without depth, can be obtained by

solving the following optimization problem:

t∗ = argmin
t

M∑
i=1

(ri1(t))
2
+ (ri2(t))

2
+

N∑
i=1

(r′i(t))
2

(5)

where M and N are the number of tracked features

with known and unknown depth, respectively. We use the

Levenberg–Marquardt (LM) algorithm for solving Eq. (5).

By additionally constraining the 3-DoF translation from

tracked points without depth, we can estimate more accurate

translational motion compared to our previous approach.

Note that the proposed method is less sensitive to the

existence of enough textures and brightness in the image than

the typical feature-based VO methods [11], [10] since the

minimum number of points for estimating translation only is

smaller than the number of feature points to determine both

rotation and translation.

V. EVALUATION

We evaluate LPVO on a variety of RGB-D datasets in

man-made structured environments:

• ICL-NUIM [26] is a synthetic dataset consisting of a

collection of RGB and depth images at 30 Hz captured

in a living room and office with ground-truth camera

poses. The synthesized RGB and depth images are

corrupted by the modeled sensor noise to simulate

typically observed real world artifacts. It is challenging

to estimate the camera trajectory accurately due to low

texture and frequent on-the-spot rotations.

• TUM RGB-D [7] is a famous dataset for VO evaluation,

containing RGB-D images from a Microsoft Kinect

RGB-D camera in various indoor environments. It is

recorded in room-scale environments with ground-truth

trajectories provided by a motion capture system.

• TAMU RGB-D [8] contains RGB-D images at 30 Hz

recorded in larger scale man-made environments like

corridors and stairs inside a building.

• Author-collected RGB-D dataset consists of RGB and

depth images at 30 Hz with an Asus Xtion Pro Live

RGB-D camera in large building-scale indoor environ-

ments over 100 m traveling distance.

We compare the proposed LPVO method against other

state-of-the-art VO algorithms, including indirect, direct, and

hybrid methods, namely ORB [5], DEMO [10], DVO [13],

MWO [20], and OPVO [6]. ORB, DEMO, and DVO estimate

the rotational and translational motion jointly, while MWO

and OPVO decouple the estimation of the rotational and

translational motion like LPVO. Recall that the proposed

LPVO builds on our previous work OPVO [6]. We deactivate

the capability to detect loop closures via image retrieval in

ORB for a fair comparison.

The proposed LPVO written in unoptimized MATLAB

codes is able to run at 13.5 Hz on a desktop computer with

an Intel Core i5 (3.20 GHz) and 8 GB memory, suggesting

potential when implemented in C/C++ in the near future.
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TABLE I

EVALUATION RESULTS ON ICL-NUIM BENCHMARK

Experiment LPVO ORB DEMO DVO MWO OPVO Length (m)

Living Room 0 0.01 0.02 0.14 0.22 × × 4.14

Living Room 1 0.04 0.03 0.15 0.07 0.32 0.04 2.05

Living Room 2 0.03 0.07 0.62 0.50 0.11 0.06 8.42

Living Room 3 0.10 0.07 0.33 0.43 0.40 0.10 5.95

Office Room 0 0.06 0.20 0.34 0.37 0.31 0.06 6.53

Office Room 1 0.05 0.60 0.37 0.36 1.10 0.05 6.72

Office Room 2 0.04 0.30 0.76 0.58 × × 9.01

Office Room 3 0.03 0.46 0.18 0.30 1.38 0.04 7.82

Fig. 5. Estimated trajectories with LPVO (magenta), OPVO (dark green),
and ground-truth (black) in the ICL-NUIM dataset Living Room 0, 2 and
Office Room 1, 3.

A. ICL-NUIM Dataset

We measure the root mean squared error (RMSE) of

the absolute translational error and present the results in

Table I. The smallest error for each dataset is bolded. ORB

results are from [27]. MWO and OPVO sometimes fail to

track the camera (marked as × in Table I) due to multiple

orthogonal planes not always being visible. For example, in

‘Living Room 0’, at one point OPVO sees only a single

plane, leading to failure. LPVO can continue estimating the

motion stably as shown in the top left of Fig. 5. Our method

outperforms the other VO algorithms for most test cases. In

two cases, ORB performs better thanks to sufficient texture

and local map construction, but the proposed algorithm

performs nearly as well. The average translational RMSE

of the proposed LPVO is 0.04, while ORB, DEMO, DVO,

MWO, and OPVO are 0.21, 0.36, 0.35, 0.60, and 0.06,

respectively. The main reason for the improved performance

is that LPVO accurately tracks rotations even when the

camera rotates in a place by exploiting both lines and surface

normal vectors to recognize structural regularities. Although

OPVO also estimates accurate camera rotation, it is unstable

and fails when only a single plane is visible.

The strength of LPVO becomes clear when plotting the

rotation and translation errors for the dataset ‘Office Room 3’

in Fig. 6. While the rotation error of ORB, DEMO, and DVO

Fig. 6. Absolute rotational error (top) and translational error (bottom) for
the proposed and other VO algorithms are plotted. The proposed method
shows the lowest rotation and translation error against other VO methods.

TABLE II

EVALUATION RESULTS ON TUM RGB-D BENCHMARK

Experiment LPVO ORB DEMO DVO MWO OPVO Length (m)

fr3 longoffice 0.19 0.02 1.50 0.61 × × 22.14

fr3 struc notex far 0.07 0.28 0.40 0.59 0.47 0.13 1.66

fr3 struc notex near 0.08 0.63 2.59 0.73 0.95 0.16 2.05

fr3 struc tex far 0.17 0.03 0.06 0.13 1.57 0.18 6.04

fr3 struc tex near 0.11 0.03 0.20 0.08 0.62 0.19 5.21

fr3 large cabinet 0.28 0.47 0.96 0.97 0.83 0.51 12.37

gradually increase over time, LPVO, MWO, and OPVO drift

less than 0.5 degrees thanks to drift-free rotation estimation.

The average rotation error of the proposed method is 0.22
degrees whereas ORB, DEMO, DVO, MWO, and OPVO are

1.63, 3.15, 8.12, 0.22, 0.21 degrees respectively. We can also

observe that the translational error mainly occurs due to the

drift of rotation estimate in the bottom of Fig. 6. Because

there are sufficient orthogonal planes, MWO and OPVO can

also estimate accurate and drift-free rotational motion. How-

ever, LPVO estimates more accurate translational motion by

minimizing the de-rotated reprojection error from tracked

points with and without depth information.

B. TUM RGB-D Dataset

We evaluate the motion estimation results on a subset of

image sequences which contain sufficient structural regu-

larities (lines and planes) in the observed scenes. Table II

compares results of the VO methods. Estimated camera

trajectories with the ground-truth, LPVO, and OPVO are

shown in Fig. 7. We observe that ORB outperforms the

proposed algorithm in incomplete (ambiguous) structured en-

vironments such as ‘fr3 longoffice’. However, LPVO shows

better performance in very low texture environments with the

help of structural information. LPVO can also work in im-

perfect structural environments like ‘fr3 longoffice’ whereas

MWO and OPVO require at least two orthogonal planes

throughout the entire motion estimation process. When there
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Fig. 7. Estimated trajectories with LPVO (magenta), OPVO (dark green),
and ground-truth (black) in the TUM fr3 longoffice, fr3 struc notex far,
fr3 struc tex near, and fr3 large cabinet.

Fig. 8. Example image from ‘Corridor-A-const’, the clustered lines/planes,
and the inferred MF orientation are shown on the left. Since an RGB-D
camera looks at only a single plane from this blue box point, OPVO fails
to estimate camera motion while LPVO does not. The 3D point cloud is
rendered by back-projecting the depth sensor from the estimated camera
trajectory with the proposed method. No fusion is performed.

is only a single plane visible, OPVO fails but the proposed

method does not as shown on the top left of Fig. 7.

C. TAMU RGB-D Dataset

We present a 3D reconstruction result of ‘Corridor-A-

const’ in the TAMU dataset based on the motion estimation

of LPVO in Fig. 8. The trajectory is about 88 meters

long, and includes four pure rotational movements, difficult

textures, and a segment where the camera looks at only a

single plane as shown on the left of Fig. 8. LPVO stably

tracks the 6-DoF camera motion even when looking at only

a single plane while OPVO fails to estimate rotational motion

of a camera, resulting in overall motion estimation failure.

Therefore, LPVO accurately estimates the entire camera

motion, and achieves final drift error lower than 0.3%, which

is the final positioning error divided by the total traveling

distance. The start and end points of the estimated camera

trajectory accurately meet. The drift-free rotation estimates

act like an indoor 3-DoF compass in the long square corridor,

Fig. 9. Example images from the author-collected RGB-D dataset. Inferred
MF orientations with clustered lines/planes are overlaid on top of the RGB
images from the single-loop (left) and multiple-loop (right) sequences.

resulting in consistent and low-drift motion estimation. Our

method preserves the orthogonality of the reconstructed 3D

point cloud well, which is rendered by back-projecting the

depth image from the estimated camera poses. Note that we

do not perform any additional SLAM techniques like 3D lo-

cal map fusion, loop detection & closure, and relocalization,

but the consistent 3D reconstruction result indicates the high

accuracy of our VO approach.

D. Author-collected RGB-D Dataset

Finally, we demonstrate that the proposed VO method

can work in building-scale indoor environments like long

corridors. Fig. 9 shows excerpts from the ‘single-loop’ (left)

and ‘multiple-loop’ (right) datasets, with trajectory lengths

of 93 m and 120 m respectively. The dataset was taken

on long square corridors of two different buildings, and is

very challenging due to frequent on-the-spot rotations and

difficult textures. For evaluating the VO algorithms without

a ground-truth trajectory, we collect the dataset on closed-

loop trajectories where the starting and end points coincide.

The resulting trajectories for all algorithms are shown in

Fig. 10. With LPVO, the starting and ending points nearly

match; for the others, they do not. LPVO’s final drift error is

under 0.2%. LPVO robustly and accurately tracks the 6-DoF

camera motion, preserving the orthogonality of the estimated

corridor trajectory in the square building.

Similarly, for the ‘multiple-loop’ dataset (see right of

Fig. 10) the start and end points meet only with the pro-

posed algorithm, with final drift error under 0.7%. Although

MWO and OPVO can perform drift-free rotation estimation,

inaccuracies in translational motion estimation as discussed

in Section V-A cause errors to accumulate. The reconstructed

trajectory with the proposed method preserves the orthogo-

nality of the corridors in the square building, demonstrating

the high quality of the motion estimation. Please refer to the

video clips submitted with this paper showing more details

about the experiments.

Please refer to the video clips submitted with this paper

showing more details about the experiments.1

VI. CONCLUSION

We propose a new visual odometry algorithm that is

able to perform accurate and low-drift motion estimation in

1Video available at https://youtu.be/mt3kbv2TJZw
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Fig. 10. Estimated trajectories with the proposed and other VO methods on the author-collected dataset in a single-loop (left) and multiple-loop (right)
sequences. We start and end at the same point marked in the black circle to check loop closing in the estimated trajectories.

structured environments by decoupling the camera motion

into a separate rotation and translation estimation. We newly

exploit line and plane primitives together to deal with the

degenerate case in the previous drift-free rotation estimation

methods, resulting in stable and accurate zero-drift rotation

estimation. Given the absolute camera orientation, we re-

cover the optimal translational motion, which minimizes de-

rotated reprojection error based on all tracked points with and

without depth. The proposed algorithm is tested thoroughly

with a large number of datasets, and shows accurate and low-

drift motion estimation results in structural environments.

Our method is currently tested with an RGB-D camera in

indoor environments. In the future, we will try to implement

the proposed algorithm with a stereo camera and possibly

extend to outdoor urban environments.
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