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Abstract: One of the most crucial aspects of 3D facial models is facial reconstruction. However, it is
unclear if face shape distortion is caused by identity or expression when the 3D morphable model
(3DMM) is fitted into largely expressive faces. In order to overcome the problem, we introduce neural
networks to reconstruct stable and precise faces in time. The reconstruction network extracts the
3DMM parameters from video sequences to represent 3D faces in time. Meanwhile, our displace-
ment networks learn the changes in facial landmarks. In particular, the networks learn changes
caused by facial identity, facial expression, and temporal cues, respectively. The proposed facial
alignment network exhibits reliable and precise performance in reconstructing static and dynamic
faces by leveraging these displacement networks. The 300 Videos in the Wild (300VW) dataset is
utilized for qualitative and quantitative evaluations to confirm the effectiveness of our method. The
results demonstrate the considerable advantages of our method in reconstructing 3D faces from
video sequences.

Keywords: face alignment; face tracking; face displacement; temporal stability; video-based alignment

1. Introduction

Three-dimensional (3D) facial models find widespread applications in various facial
tasks, including facial animation, facial synthesis, facial reconstruction, facial recognition,
and facial tracking. A crucial pre-processing step for utilizing 3D facial models is facial
alignment, which involves moving and deforming a facial model to match an image. The
regularized structure of facial components, such as the eyes, lips, and nose in human
faces, serves as a valuable prior for efficient facial alignment. However, conventional facial
alignment methods exhibit instability when dealing with large pose and expression changes.
In such scenarios, it becomes challenging to distinguish whether the observed facial shape
changes derive from identity, expression, or pose variations. Furthermore, when this
ambiguity extends to the temporal domain, it results in unnatural facial shape changes
and jittering artifacts, leading to significant visual quality degradation. To overcome these
issues, this paper introduces a facial reconstruction framework that learns facial movements,
i.e., displacements, according to facial identity, expression, and temporal cues.

The 3D morphable model (3DMM) stands as the most widely utilized statistical rep-
resentation for obtaining 3D faces from facial images in diverse face-related applications.
Since its initial introduction [1], various adaptations of the 3DMM have been developed by
employing principal component analysis (PCA) to decompose facial scans of different iden-
tities and expressions, enabling the representation of arbitrary human faces. Consequently,
it efficiently captures the 3D facial shape from a given facial image. However, challenges
arise when fitting the 3DMM to facial images exhibiting large expression or pose variations.
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In such cases, there exists ambiguity in the facial shape, making it difficult to determine
whether the facial shape deformation is due to identity or expression changes. While this
ambiguity may not result in substantial visual degradation in a static context, it becomes
evident in a temporal domain, leading to apparent visual artifacts, such as unnatural facial
shape changes and jittering artifacts. To address the problem, we separately modeled
identity shape, expression shape, and temporal movements. In facial parametric models,
such as 3DMM [1] or FLAME [2], it is demonstrated that the statistical shape variations (i.e.,
movements or displacements) caused by facial identity and expressions are independent of
each other. Thus, the proposed method models these movements separately to effectively
reduce the ambiguity of the facial movement.

Recently, with the expansion of the generative adversarial network (GAN) in deep
learning, it has been found that using discriminators leads to a network with higher
performance [3]. The GAN is composed of two networks: a generator and a discriminator.
The discriminator is trained to determine whether the input data distribution is close
to the ground-truth data distribution or the generated data distribution. At the same
time, the generator is trained to fool the discriminator, by generating more accurate data.
Recently, thanks to the powerful performance of the discriminator, the discriminator
has been widely adopted in various temporal data generation tasks [4,5]. Motivated
by this, we propose a stable and accurate facial alignment framework by introducing
displacement discriminators that determine that the regressed camera and facial shape
parameters are stable. We train a discriminator to evaluate whether the distribution
of the 3D face alignment results is similar to ground-truth 3D face movements. Thus,
this discriminator learns the distribution difference between alignment results and the
ground-truth movements. Then, the 3D facial alignment network is trained to produce a
stable 3D face alignment using the distribution difference trained from the discriminator
as guidance. Here, to learn the distribution difference more precisely, we present three
displacement discriminators that separately discriminate the facial movements according to
personal identity, expression, and temporal cues. The identity and expression displacement
discriminators are trained to discriminate whether the facial deformations generated from
the estimated facial identity and expression parameters are stable. This enables the facial
alignment network to estimate the accurate facial identity and expression parameters. The
temporal displacement discriminator is trained to discriminate whether the facial temporal
displacement is stable, which allows the alignment network to achieve temporally stable
alignment results. Using these displacement discriminators, the proposed facial alignment
network shows accurate and stable facial alignment performance in both the static and
temporal domains.

For the qualitative and quantitative evaluations, we use the 300 Videos in the Wild
(300VW) dataset [6], which provides large-scale facial tracking data. In the experimental
results, the proposed method shows significant improvements over state-of-the-art methods
for temporal facial alignment. The results demonstrate that the proposed method enables
accurate facial tracking with multiple discriminators by stabilizing facial locations and
shapes over time.

2. Related Works
2.1. 3D Morphable Model

Since the pioneering work of Blanz [1] introducing the first 3D morphable model
(3DMM), several subsequent 3DMMs have been proposed [7–9]. These models are con-
structed by encoding the features of 3D facial scans pertaining to identity, expression,
and texture through PCA decomposition, leveraging data collected from multiple subjects.
Due to the distinct topology of each facial scan, mesh registration is essential to establish
vertex correspondences among them. In Blanz’s work [1], optical methods were employed
to determine the vertex correspondences between facial scans. Paysan et al. [8] proposed a
non-rigid registration approach utilizing warping based on thin-plate splines (TPS) [10],
and a non-rigid iterative closest point (ICP) [11] was utilized to achieve accurate alignment.
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Vlasic et al. [9] presented a multilinear facial mode, representing facial identity and expres-
sion using singular value decomposition (SVD). Subsequently, Cao et al. [7] proposed a
bilinear facial model, building upon the multilinear model by deforming the facial scan
into a template model with expression. Thanks to the considerable efforts devoted to
constructing accurate 3DMMs, an arbitrary 3D face can now be effectively and precisely
represented using these models.

2.2. 3D Face Alignment

3D facial alignment is a task that fits the 3D facial shape into the input facial images.
Due to the powerful representation performance of the 3DMM, it is widely used for face
alignment. The first method for 3D facial alignment [12] performed alignment of the 3DMM
to the input image by minimizing the pixel-wise difference between the target facial image
and a rendered image of the 3DMM. In recent years, regression-based 3D facial alignment
techniques have been introduced [13–17], which minimize the discrepancy between the
target 2D landmarks and the projected 2D landmarks of the 3DMM. While these approaches
demonstrated performance improvements, two major challenges remain.

Firstly, self-occlusion becomes a concern when dealing with large pose or expression
variations. Self-occlusion leads to the loss of facial semantic information, resulting in
unreliable facial alignment. Secondly, in temporal sequences, temporal instability becomes
pronounced during rapid and substantial facial motion. While facial alignment results may
appear reliable in static shots, jittering artifacts often emerge in the temporal domain. To
address these issues, this paper introduces novel stabilization discriminators that effectively
guide changes in the stabilized facial shape, particularly when dealing with large poses,
expressions, and motion.

3. Method

The proposed method is composed of the facial alignment network and the displace-
ment discriminators. For the facial alignment network, we employ the 3DMM for efficient
facial shape alignment. In addition, to ensure consistent facial alignments for an individ-
ual’s identity and expression over time, multiple sub-discriminators are integrated into
the displacement discriminators. Figure 1 provides an overview of the entire framework
of the proposed method consisting of the facial alignment network and displacement
discriminators: the identity displacement discriminator (IDD), expression displacement
discriminator (EDD), and temporal displacement discriminator (TDD).
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Figure 1. Overall framework of the proposed facial alignment method. The proposed method is
composed of the facial alignment network (G), identity displacement discriminators (DID), expression
displacement discriminator (DED), and temporal displacement discriminator (DTD). For the face
alignment, the facial alignment network estimates the 3DMM parameters α and camera parameters
p corresponding to the current image. The identity and expression displacement discriminators
(DID, DED) are trained the assess whether facial shape changes align with an individual’s identity
and expression, respectively. In addition, the temporal displacement discriminator is trained to
determine whether the temporal facial shape change is stable or not.
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3.1. Facial Alignment Network

A 3DMM represents an arbitrary 3D face (S) using bases decomposed through PCA.
Using the 3DMM, the 3D face (S) can be represented by parameters for both identity and
expression, α = [αid, αexp]. Given a 2D image I, the facial reconstruction network G finds
the shape parameters α. Then, the projected landmark of the 3D face is estimated using a
landmark index vector l ∈ R68. The reconstruction network is trained using the Lland loss.
Lland is defined as follows:

Lland = |v(:, l)−U|2, (1)

where U is the labeled ground-truth 2D landmark location of the input image.

3.2. Displacement Discriminators

To achieve stability in both the temporal and static domains during training of the
facial alignment network, we propose the use of three displacement discriminators: identity,
expression, and temporal cues. The identity and expression displacement discriminators
play a vital role in stabilizing the facial alignment network in the static domain. This is
accomplished by distinguishing between the changes in facial shape estimated based on the
identity and expression parameters. Consequently, the network can better understand and
differentiate the influences of identity and expression on facial shape variations. On the
other hand, the temporal displacement discriminator ensures stability in facial alignment
over time by discerning changes in facial shape across consecutive frames. This helps the
network maintain consistent facial alignments throughout a temporal sequence.

3.2.1. Identity Displacement Discriminator

The identity displacement discriminator (IDD) is to determine whether the estimated
changes in facial shape align with the desired facial shape corresponding to the regressed
facial identity parameter. To train the IDD, we calculate the difference between the facial
landmarks and the estimated landmarks without considering identity information. To
compute this calculation, we estimate the landmark displacement depending on the identity
parameter as follows:

Sexp = S̄ + Aexpαexp, (2)

vexp = f · P ∗ R ∗ Sexp + t, (3)

Facial landmarks are detected from the projected facial vertices, which are in image
coordinates. To facilitate comparison, both the ground-truth and estimated landmarks are
normalized to the range of [0, 1] before computing the difference. The input for the IDD
is then obtained by calculating the discrepancy between the normalized landmarks. This
process ensures that the IDD can effectively discern facial shape changes due to variations
in identity. The difference to be used as input for the IDD is computed by using the
normalized landmarks as follows:

xID = U− vexp(:, l), (4)

xz,ID = v(:, l)− vexp(:, l), (5)

where xID is the landmark difference between the ground-truth and estimated xz,ID land-
marks. To make the IDD learn the stabilized displacement based on the identity parameter,
we use xID as the real distribution, and we use xz,ID as the fake distribution. Therefore, the
loss for the IDD is defined as follows:

LDID = ExID [log(DID(xID)] +Exz,ID [log(DID(xz,ID)] (6)
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3.2.2. Expression Displacement Discriminator

Similarly to the IDD, the expression displacement discriminator (EDD) is trained
to distinguish facial shape changes based on the validity of the expression parameter.
Similarly to Equation (3), we calculate the facial shape displacement without expression
SID by replacing Aexp and αexp with Aid and αid. Thus, the expression-based facial shape
displacement is defined as follows:

Sid = S̄ + Aidαid, (7)

vid = f · P ∗ R ∗ Sid + t, (8)

Then, the expression-based landmark displacement xexp and xz,ED are defined as follows:

xED = U− vid(:, l), (9)

xz,ED = v(:, l)− vid(:, l), (10)

During the training of the EDD, the differences between the calculated landmarks without
expression xED are used as the real data distribution, and the estimated landmarks xz,ED
are used as the fake distribution. The loss for the EDD is defined as follows:

LDED = ExED [log(DED(xED)] +Exz,ED [log(DED(xz,ED)] (11)

3.2.3. Temporal Displacement Discriminator

The IDD and EDD are responsible for stabilizing the facial alignment network in a
static domain. To further enhance the temporal stabilization performance, we introduce a
temporal displacement discriminator (TDD) to guide the changes in the temporal facial
shape through the frames. The input for the TDD is derived from the variation in facial
landmarks between the current and previous frames. Facial temporal changes are assessed
by calculating the difference between the landmarks of the current frame and those of the
previous frame as follows:

xTD = U−U′, (12)

xz,TD = v(:, l)− v′(:, l), (13)

where v′ and U′ are the projected vertices and the ground-truth landmark of the previous
frame, respectively. The temporal discriminator loss is defined as follows:

LDTD = ExTD [log(DTD(xTD)] +Exz,TD [log(DTD(xz,TD)] (14)

3.2.4. Adversarial Loss Function

These multiple discriminators (i.e., IDD, EDD, and TDD) are trained to discern the
validity of identity, expression, and temporal changes in facial shape. Concurrently, the fa-
cial alignment network is trained to deceive these discriminators. The overall adversarial
losses for these discriminators, denoted as LDID , LDED , and LDTD , are defined as follows:

LD = λIDLDID + λEDLDED + λTDLDTD (15)

where λID, λED, and λTD are factors for balancing between each loss term. Thus, the loss
function in Equation (15) is used to train the IDD, EDD, and TDD.
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The total loss for the facial alignment network (G) is defined by combining the align-
ment and adversarial losses as follows:

LGID = ExID [log(DID(xz,ID)], (16)

LGED = Exz,ED [log(DED(xz,ED)], (17)

LGTD = Exz,TD [log(DTD(xz,TD)], (18)

LG = LGalign + λIDLGID + λEDLGED + λTDLGTD (19)

Similarly to the conventional GAN training, we freeze the discriminators, i.e., IDD, EDD,
and TDD, when training the facial alignment network. Thus, the discriminators and facial
alignment network are trained alternately. In our experiments, we used balancing factors
λID=λED = λTD = 0.1. In our experiments, the same network architecture was employed
for all discriminators. To assess stability, we utilized the landmark difference and passed
it through three fully connected layers, which ultimately produced a single scalar value
ranging from 0 to 1.

For better understanding, we represent a block diagram of the training procedure of
the proposed displacement learning method in Figure 2. The IDD (DID) and EDD (DED) are
trained to judge the estimated facial landmark displacement (xz,ID and xz,ED) as unstable
(0) and the ground-truth landmark displacement (xID, xED) as stable (1). The TDD (DTD) is
trained to discriminate the temporal displacement of the estimated faces xz,TD as unstable
(0) and that of the ground-truth faces xTD as stable (1). To deceive these identity, expression,
and temporal displacement discriminators, the facial alignment network is trained for
these discriminators to output stable (1) from the estimated face (xz,ID, xz,ED, and xz,TD). In
short, similarly to the conventional GAN training procedure, we alternately train the facial
alignment network and the displacement discriminators. In a single training iteration, we
first train the displacement discriminators by freezing the facial alignment network and
then train the facial alignment network by freezing the displacement discriminators.
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Figure 2. Block diagram of the training procedure of the proposed displacement learning method. I
and I′ are the image of the current and previous frames, respectively. The face alignment network G
has shared weight when aligning the current 3D face v and previous 3D face v′.

4. Experimental Results
4.1. Implementation Details

In our experiments, we utilized the 300VW dataset [6], a large-scale facial tracking
dataset containing 114 videos with a total of 218,595 frames, each annotated with 68-point
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landmark labels. Among these videos, 50 were used for training, and the remaining 64
were designated for testing. The test videos were further categorized into A, B, and C sets,
with C being the most challenging test subset.

During the training phase, each frame was cropped using a ground-truth landmark
and resized to 256 × 256 pixels, serving as input for the facial alignment network. We
employ the ResNet 18 backbone [18] for the facial alignment network. Figure 3 represents
the details of the facial alignment network, identity displacement discriminator, expression
displacement discriminator, and temporal displacement discriminator for reproducibility.
In the facial alignment network, we add the splitting layer and four fully connected layers
at the end of the ResNet backbone to estimate the 3DMM and camera parameters. In the
splitting layer, the output feature vector is split into 990-dimensional and 35-dimensional
feature vectors by proportionally dividing them based on the anticipated number of 228
3DMM parameters and 8 camera parameters. The 990-dimensional feature vector is fed
into two fully connected layers, which are composed of 228 and 228 nodes, to estimate
the 3DMM parameters. The output for the 3DMM parameter has a 228-dimensional
vector. Here, 199 dimensions are used for identity parameters, and 29 dimensions are
used for expression parameters. Similarly, the 35-dimensional feature vector is fed into
two fully connected layers to estimate the camera parameters. For the camera parameter
estimation, each fully connected layer has 16 and 8 nodes, respectively. In all layers of
the facial alignment network, the RELU activation functions are employed except for the
last layer. In the last layer, no activation functions are employed. For the displacement
discriminators, we use four fully connected layers. Each fully connected layer has 256, 128,
64, and 1 node, respectively. All of the displacement discriminators are constructed with the
same architecture. Table 1 summarizes the architecture of the displacement discriminator.

Table 1. Network architecture of the displacement discriminator.

Layer Configuration Size

Input Flatten landmark B × 136
FC1 Node = 256, Activation = RELU, dropout = 0.3 B × 256
FC2 Node = 128, Activation = RELU, dropout = 0.3 B × 128
FC3 Node = 64, Activation = RELU, dropout = 0.3 B × 64
FC4 Node = 1, Activation = Sigmoid, dropout = 0.3 B × 1
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Figure 3. Detailed architecture of the facial alignment network G, identity displacement discriminator
DID, expression displacement discriminator DED, and temporal displacement discriminator DTD.

To improve the network’s temporal robustness, the frame interval between the current
and previous frames was randomly increased within the range from one to six. After the
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second frame, each frame was cropped using the landmarks estimated from the previous
frame. In the testing phase, the first frame was cropped based on landmarks detected
using a conventional landmark detection algorithm called MTCNN [19]. For subsequent
frames, each one was cropped using landmarks estimated from the previous frame. The
proposed method used in all experiments was trained for 500 epochs using TensorFlow
(version 2.10.0), CUDNN (version 8.1), and CUDA (version 11.2). We employed the Adam
optimizer for optimization and trained the model on a single NVIDIA 2080Ti (11 GB) GPU
with a batch size of 20. The learning rate was set to 0.001 during the initial training phase,
and it gradually decreased to 0.00001 over time.

4.2. Performance Evaluation

For this evaluation, we conducted a comparison of our method against other state-
of-the-art facial alignment techniques, namely 3DDFA [20], RingNet [21], DSFNet [22],
and SADRNet [23]. To quantitatively assess the performance, we measured the normalized
mean error (NME) of the 2D facial landmarks. The NME is calculated as the average
normalized landmark error divided by the facial bounding size, as per previous facial
alignment methods [24,25]. The facial bounding box’s size is defined as the square root of
the product of the width and height of the rectangular hull formed by all the landmarks.

For the qualitative comparison, we visualize some examples of the 3D face alignment
outcomes on 300VW-A, 300VW-B, and 300VW-C in Figure 4. On the 300VW-A set, the easi-
est dataset, all comparison methods, including ours, show similar alignment performance.
In contrast, our method shows significantly better performance than the comparison meth-
ods on the 300VW-C dataset. Note that 300VW-C is the most challenging dataset because
of the fast motion and extreme light conditions. Specifically, our method shows more
accurate alignment results in the face contour and the mouth. In summary, the results show
that our method outperforms the state-of-the-art face alignment method in all cases of the
300VW dataset.
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Figure 4. Qualitative evaluation of temporal 3D face alignment performance on 300VW dataset.

We also evaluate the performance of face alignment in cases where a part of the
face is occluded. Figure 5 demonstrates the results of face alignment under occlusion.
3DDFA [20] and RingNet [21] often fail to align the 3D face when significant occlusion
occurs. DFSNet [22] and SADRNet [22] exhibit substantial alignment errors when the
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face is occluded. In particular, when most of the facial region is occluded, both methods
have large alignment errors in rotation, translation, and scale estimations. In contrast, our
proposed method demonstrates stable face alignment even under significant occlusion,
providing accurate results for rotation, translation, and scale estimation. This result shows
that our method outperforms other methods by achieving a stable alignment performance
in extreme cases.
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Figure 5. Qualitative evaluation of temporal 3D face alignment performance on occlusion case.

In addition, we quantitatively evaluate face alignment accuracy by measuring the
normalized mean error (NME) of the 2D facial landmarks. The NME is the landmark error
normalized by the size of the facial bounding box [15]. The size of the facial bounding box
is defined by the

√
height× width of the rectangular hull calculated from all landmarks.

The quantitative evaluation is summarized in Table 2. Here, the accuracy is the percentage
of the bounding box size. It shows that our method outperforms other state-of-the-art
face alignment methods. On the 300VW-A set, our method achieves a 14.34% accuracy
improvement over the 3DDFA [20], which has the lowest accuracy. In addition, our method
achieves accuracy improvements of 16.01% and 19.27% on the 300VW-B and 300VW-C
datasets over the 3DDFA [20], respectively. This shows that our method demonstrated
a distinct advantage in the challenging tracking case (300VW-C) compared to the other
comparison methods, and it is consistent with the result in Figure 4.

Table 2. Shows 2D facial alignment accuracy (%) on 300VW dataset.

Method 300VW-A 300VW-B 300VW-C

3DDFA [20] 2.913 3.035 3.387
RingNet [21] 2.845 2.983 3.343
DSFNet [22] 2.799 2.878 3.214

SADRNet [23] 2.745 2.770 2.858
Ours 2.495 2.549 2.734
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4.3. Ablation Study

The proposed method is inspired by the fact that statistical facial parameter models,
such as FLAME and the 3DMM, independently model facial movements with respect
to identity, expression, and temporal aspects. Thus, the proposed method separately
models identity shape, expression shape, and temporal movements with three different
discriminators. To assess this, we conducted eight ablation tests according to the use of the
discriminator.

In the baseline experiment, we trained the facial alignment network without incorpo-
rating any discriminator. Subsequently, for each discriminator, we evaluated its individual
performance on the baseline model. The ablation tests were performed by measuring
the accuracy of facial alignment, represented by the NME. The results of these tests are
summarized in Table 3.

Table 3. Ablation tests of 2D facial alignment accuracy (%) depending on the displacement discriminator.

Method 300VW-A 300VW-B 300VW-C

Without all 3.731 4.060 4.677
With DID 3.315 3.575 3.912
With DED 3.133 3.284 3.665
With DTD 3.078 3.192 3.504
With DID, DED 3.099 3.227 3.601
With DID, DTD 2.912 3.085 3.311
With DED, DTD 2.721 2.801 3.057
With DID, DED, DTD 2.495 2.549 2.734

The results indicate that each individual discrimination of identity, expression, and tem-
poral changes contributes significantly to performance improvements. Notably, temporal
discrimination plays the most crucial role in achieving stable facial alignments over time,
while identity discrimination has the least impact. By comparing the outcomes in Table 3,
it is evident that employing multiple discriminators for temporal, identity, and expres-
sion simultaneously provides substantial benefits in obtaining stable 3D facial alignments.
Therefore, the ablation tests show this independence and orthogonality of facial identity,
expression, and temporal movements, and it is demonstrated that using all discriminators
can significantly boost performance.

5. Discussion and Conclusions

In this paper, we present a robust and precise facial alignment framework by intro-
ducing multiple stability discriminators. These discriminators effectively determine the
camera, face identity, and expression parameters from an input image simultaneously.
The proposed framework comprises a facial alignment network and three displacement
discriminators: identity (IDD), expression (EDD), and temporal (TDD) discriminators. The
previous temporal smoothing scheme uses the local average to reduce the outlier alignment
result. It effectively reduces the alignment error of the outlier frame but causes unwanted
alignment errors in nearby frames due to the local averaging scheme. In contrast, the pro-
posed discriminator-based method can effectively reduce the alignment error in the outlier
frame without causing unwanted alignment error propagation. This is possible because the
discriminator accurately distinguishes unnatural and unstabilized facial movements based
on facial identity, expression, and temporal cues using a comparison with the ground truth
of the facial movement. To evaluate the performance of the proposed discriminators, we
conducted qualitative and quantitative assessments using the 300VW dataset, a large-scale
facial tracking dataset. The experimental results demonstrate significant improvements
over state-of-the-art methods, showcasing the effectiveness of our approach in achieving
accurate and stable facial alignment over time.

However, the main bottleneck in our method is that displacement discrimination is
performed based on the 2D facial landmarks. This is because there is no publicly available
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video-based dense 3D face dataset. Since a 2D facial landmark provides sparse information
on the facial shape, more detailed facial deformation, such as facial wrinkles, cannot be
represented using the facial landmark. Therefore, the loss of information in facial details
is a limitation of our work. We believe that when the proposed method is trained using a
video-based dense 3D face dataset, it will exhibit stable temporal alignment performance
while generating facial details. In future research, we plan to extend landmark displacement
discrimination to dense displacement discrimination by employing the self-supervised
method. This may accurately represent changes in facial details as well as facial shape over
time. Lastly, we hope that our work will be valuable in various facial applications, including
facial recognition [26–28], facial animation [29,30], and VR communication [31,32].
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The following abbreviations are used in this manuscript:
IDD Identity displacement discriminator
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2S Two-dimensional
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TPS Thin-plate splines
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