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ABSTRACT In this paper, we present a novel facial albedo and 3D shape recovery method with a local
spherical harmonic illumination model. From a face in an image, the proposed method can produce a high-
quality 3D shape and albedo using a novel parameterization of local illuminations. Because a facial shape
is partially convex, a single spherical harmonics is generally used for the illumination of a face within a
constrained illumination environment. However, when a facial image is captured in an unconstrained scene,
the illumination is inappropriately estimated due to the presence of shadow and specular reflections. To
address this issue, we propose a novel local spherical harmonic illumination model for representing the
illumination of a face. Unlike the existing parameterization of local illumination, our local spherical harmonic
illumination model utilizes a smooth weight function for the seamless representation of natural illumination.
Therefore, the albedo and shape information in an image can be precisely estimated using the first-order
spherical harmonics. For accurate estimation of albedo, we also utilize facial albedo statistics to prevent
the estimated albedo from becoming biased toward input image. Furthermore, we developed an accurate
and reliable 3D shape reconstruction method from a normal map based on tetrahedron-based deformation.
Comparing to the Laplacian deformation based method, our method is applicable to any mesh regardless
of its structure. Through rigorous experiments, we demonstrate that the proposed local spherical harmonic
illumination model is effective in estimating the complex illumination and can recover a high-quality facial
albedo and 3D shape.

INDEX TERMS Albedo estimation, face reconstruction, shape from shading, spherical harmonic illumina-
tion, tetrahedron-based deformation.

I. INTRODUCTION
The analysis of facial geometry and appearance is a classical
problem and its applications are related to many computer
vision and graphics tasks such as face recognition [1], pose
estimation [2]–[4], and facial animation [5]. 3D face recon-
struction, which is the process of inferring the 3D geometry of
a human face from 2D images, is the most very fundamental
core that powers those applications.

Among many studies of 3D face reconstruction, estimat-
ing 3D geometry of a human face with a single image is
particularly challenging because of the loss of depth infor-
mation caused by camera projection. Therefore, many of the
recent studies in the computer vision field have focused on
approximating the 3D geometry in a single image using prior
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knowledge regarding the target object [6]. A well-known
prior model for face reconstruction is the 3D Morphable
Model (3DMM), which is a statistical model of facial shape
and albedo [7]. Several studies have attempted to recon-
struct the 3D face model from a single image by optimizing
the parameters of 3DMM [8]–[10] or utilizing the deep-
learning method [11], [12]. However, such methods can only
reconstruct the smooth parts of facial geometry and fail to
reconstruct the high-frequency details such as beard, pore,
and wrinkles. In recent years, several methods have been
proposed to recover high-frequency details from the smooth
geometry by using the shape from shading (SfS) technique
[13], [14]. This technique is widely adopted for computing
the 3D geometry of highly curved regions based on the illumi-
nation and reflectance model for shading variation [15], [16].
By assuming that a face can be represented by pure diffuse
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reflectance model, most of studies have focused on Lam-
bertian reflectance in conjunction with second-order spher-
ical harmonics (SH) for illumination model [9], [17], [18].
This approach is effective for images taken under controlled
illumination conditions. However, for the face images with
complex illumination, the SfS process with single second-
order SH may fail to reconstruct locations containing effects
that cannot be modeled accurately.

Although the second-order SH is proven to be robust for
Lambertian diffuse surfaces [19], facial images in natural
scenes contain various lighting effects such as cast shadow,
specular, and indirect illumination. For specular illumination,
one way to model such effects is to adopt a non-Lambertian
reflectance model such as the dichromatic model, with a
higher-order SH basis [20]. Although such a model is useful
for estimating surface normals of a reflective object with a
strictly constrained setup [21], the estimation for a single
image is difficult because it is a highly under-determined
problem. Additionally, to model cast shadows and inter-
reflection, a computationally expensive algorithm such as
ray-tracing [22], is required. In early works on facial shape
recovery, several researchers attempted to reduce the com-
plex lighting effects by using an intensity map called cor-
rective field [17], [23]. This map is introduced to reduce
the shading error on a wide shadow region on a face, but
not small shadow regions, such as a nasal cavity. Moreover,
shading properties are not fully considered, resulting in the
filtering shadow regions during the process of recovering
albedo and shape. Recently, a global and local SH model
for scene depth and reflectance estimation for single image
is proposed [24]. Local SH captures partial illumination that
compensates for residual discrepancies between image and
global illumination. In [24], the effective range of each local
SH was defined on a particular rectangular grid. This strategy
produces fine approximations of the illumination variation in
a scene with a set of small objects. However, for an image
with spatially varying appearances, this method can produce
aliasing artifacts near the boundary of the grid.

Motivated by these previous works, we address the prob-
lem of complex illumination for facial 3D shape and albedo
recovery from a single image using a novel local SH illu-
mination model. Because the illumination on a face varies
depending on facial structure and lighting environments, local
SH illumination with a rectangular grid fails to model regions
with complex illumination effects. Rather than using a rectan-
gular grid, we propose a more flexible local SH illumination
model by clustering the pixels based on its luminance cues.
Based on these clustered pixels, the shape and local contribu-
tion of each local SH illumination is computed using a local
weight function that accounts for smooth variations around
the cluster. The aliasing artifact caused by rectangular grids
can be resolved because of the property of signal interpolation
between local weight functions. On the leverage of the pro-
posed illuminationmodel, we propose an optimization frame-
work for recovering facial albedo and 3D shape information
from a single image. By using a prior face model initialized

by the existing fittingmethod, we obtain illumination, albedo,
normal, and 3D shape through an alternating optimization
scheme. We observe that the proposed local SH illumination
is able to model complex illumination efficiently by using
a low order basis. Therefore, by using the first-order basis,
we can linearize each problem while retaining the advantage
of local SH illumination. To this end, we develop a simple
but robust method for reconstructing a 3D facial shape by
using tetrahedron-based deformation technique with triangle
normals. Compared to the traditional approach using surface
Laplacian, we show that this technique can reliably recon-
struct a 3D shape regardless of a mesh structure of the prior
3D shape. An example of the proposed method compared to
the single SH is presented in Fig. 1.

FIGURE 1. An example result of facial albedo and shape recovery. For
shading variations because of the self-shadow in the red boxes,
the proposed local SH reconstructs details of the facial shape, albedo as
well as shading.

Our main contributions can be summarized as follows:
• We propose a robust and efficient optimization frame-
work for estimating facial albedo and 3D shape from
single image based on a simple but effective local SH
illumination model for natural scenes.

• A local SH illumination model is constructed upon
the smooth and flexible weight function based on
superpixel clustering. This function smoothly inter-
polates the local illuminations of its surrounding
regions.

• Unlike the traditional SfS method which recovers a 3D
shape by optimizing the heightmap or surface Laplacian
from computed normal map, we adopt a tetrahedron
based deformation method that can be efficiently solved
by linear optimization.

The remainder of this paper is organized as follows.
In Section II, several studies related to the proposed
method are briefly reviewed. In Section III, we intro-
duce the proposed local SH illumination model. We then
present an efficient framework to recover facial shape and
albedo in Section IV. Following the comprehensive experi-
ments in Section V, the final conclusion is summarized in
Section VI.
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II. RELATED WORKS
Because inferring facial albedo, and 3D geometry from a
single image is an ill-posed problem, most studies have uti-
lized prior models of a face such as the 3DMM [7]. By
using the 3DMM, there are several approaches for recon-
structing the 3D face model, which can be categorized into
inverse rendering [8], SfS technique combined with 3DMM
fitting [25], and end-to-end frameworks based on deep
learning.

Inverse rendering aims to recover shape, illumination,
and reflectance information from a single image or set of
images. In particular, for 3D face reconstruction, the low-
dimensional parameters for shape and albedo of the 3DMM
are estimated based on a specific reflectance model. Blanz
and Vetter [8] reconstructed a 3D face model using the Phong
reflectance model with weak specular assumption. To incor-
porate complex illumination, a shading model represented
by second-order SH was proposed [9]. Additionally, some
recent works have attempted to merge the from-the-studio
texturewith in-the-wild texture [1], [10].While the traditional
3DMM was constructed from 200 face scans, 9,663 distinct
faces were used to generate the large-scale facemodel [26]. In
[27], the linear representation of the 3DMMwas transformed
into a nonlinear representation using a deep neural network.
However, this technique cannot reconstruct the fine details of
facial geometry, such as deep wrinkles, because such mod-
els are constructed based upon the generalization of facial
appearance.

SfS, which is a technique for inferring the normal map
of a given image, has been widely adopted for enhancing
high-frequency details with an initial estimate of a 3D model.
After using various methods to compute an initial model,
such as multi-view stereo [15], depth [16], or template-based
methods [13], the surface normal, illumination, and albedo
are inferred to reconstruct a point cloud and corresponding
mesh. For human faces, SfS-based methods can successfully
recover 3D geometry from a set of unconstrained [14] or stu-
dio level [13], [28] images. In [14], a 3D surface correspond-
ing to computed point normals was generated by deforming
a template shape using the Laplacian surface deformation
technique [29]. Additionally, outlier pixels were filtered by
using a structural similarity index (SSiM) [30] to avoid inac-
curate albedo estimation. For single-image cases, the most
common approach is to compute a depth map iteratively by
updating albedo, illumination, and normal maps [25]. Biswas
et al. [31] proposed the linear minimum mean squared error
estimation for albedo in an image. Their reported results
demonstrated that a linear least square process conjoint with
error statistics computed by using 3DMM can generate an
albedo that is visually similar to the true albedo. Another
approach is to compute albedo by estimating coefficients
for the principal components of a statistical albedo model
constructed from hundreds of scan data [17]. To reduce the
effects of complex illumination effects, such as cast shadows
and specular highlights, [23] applied a corrective field to their
illumination model. Most of the aforementioned works have

made efforts to attenuate the effects of facial regions with
complex illumination effects.

Deep-learning based methods are the most preferred
approach for end-to-end inference of 3D geometry from a sin-
gle image [32]. [33] proposed a convolutional neural network
(CNN) to decompose facial images into albedo, shading,
and normal maps. Because of a lack of ground-truth data,
their network was trained using both real and synthetic data
generated by using the 3DMM. To compensate for the domain
discrepancies between real and synthetic data, photometric
rendering loss with single second-order SH was adopted.
Although this method is robust to complex illumination
effects because of the generalization capabilities of CNNs,
the reconstructed facial albedo maps were biased toward the
average albedo of the 3DMM. Furthermore, the reconstructed
facial geometry lacked high-frequency details. To recover
high-frequency details, serial architectures consisting of a
coarse-to-fine network have been proposed [27]. Recently,
a UV map, which is mapping of 3D mesh to the 2D image,
was used for inferring 3D displacement from 2D image [34],
[35]. The latest prominent results by using a UV map com-
bined with a CNN was proposed in [36].

FIGURE 2. Example of local clustering and anisotropic weighting. By using
the anisotropic weight ωj , each local SH can have a greater effect on its
adjacent clusters, which have similar luminance distributions.

III. LOCAL SH ILLUMINATION
Most methods for estimating illumination on a face assume
that human skin acts as a diffuse reflector so that illumination
can be modeled by single second-order SH. In [37], it was
demonstrated that single second-order SH can capture the
99.2% of the illumination of a Lambertian object with distant
lights. Since then, in many SfS methods for facial albedo and
shape recovery, a set of coefficients of second-order SH has
been used to represent illumination around a face. In such
model, each pixel intensity I(x, y) in an image is expressed
as the product of the facial albedo ρ(x, y) and illumination
L(x, y). We can further simplify this model by factoring the
spectral power of {R,G,B} channels into the albedo, meaning
a vector L(x, y) can be converted into a scalar L(x, y). As a
result, the pixel intensity of a face in an image can be defined
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FIGURE 3. Overview of the proposed facial albedo and shape recovery method. For a given facial image, estimated landmarks, and the prior distribution
of albedo modeled by a Gaussian mixture model (GMM), the proposed method estimates the intrinsic components of the image, including illumination,
albedo, and normal maps, in sequence. Then, the facial shape is reconstructed using the computed normal map. This method iterates on intrinsic
component estimation and surface decomposition until convergence is achieved.

as

I(x, y) = ρ(x, y)L(x, y), (1)

L(x, y) =
N∑
n=0

n∑
m=−n

lnmYnm(n(x, y)), (2)

where N , lnm, and n(x, y) are the order of SH, illumination
coefficients of the basis Ynm, and surface normal projected
onto the pixel position (x, y), respectively. For a Lambertian
object, such as a face, the global illumination is generally
approximated by N = 2.

A. LOCAL SH MODEL
Although the aforementioned model is effective for modeling
the global illumination of a Lambertian object, it cannot
model cast shadows, self-shadows, and specular reflections,
which appear in local areas of an object in natural scenes.
To model such illumination effects, a more moderate model
is required because of the non-linear nature of shadows
and high-frequency characteristics of specular reflections. To
address this issue, we propose a simple and efficient rep-
resentation for complex illumination effects using the local
SH illumination model. As demonstrated in [24], the global-
local SH representation for estimating local illumination is
effective for the robust estimation of illumination in an image.
The authors of the aforementioned paper divided an image
into rectangles so the illumination errors in each region
could be compensated independently. However, because of
the absence of smoothness constraint on border pixels, this
approach yields aliasing artifacts. Furthermore, simply mini-
mizing the illumination gradient between the adjacent regions
would result in flat local illumination. To resolve this issue,
an illumination effect on (x, y) is expressed as the sum
of global illumination and the weighted contributions of

adjacent local SH as follows:

L(x, y) = LG(x, y)+
∑
k∈C

wk (x, y)Lk (x, y), (3)

where LG(x, y), Lk (x, y), C, and wk (x, y) represent the global
illumination, k th local SH illumination, a set of clusters,
and their contributions to (x, y), respectively. Note that each
illumination follows the SH lighting formula in (2).

Unlike in [24], we compute each region for local SH using
a pixel clustering method, such as simple linear iterative
clustering (SLIC) [38], in the luminance domain. As shown
in Fig. 2, regions with shadows, such as the fourth row,
and specular effects, such as the first and third rows, can
be effectively segmented. Compared to using a rectangular
grid, this approach enables more intuitive construction of
local SH illumination. For each cluster region, we assign SH
illumination that affects not only the area inside the region but
also nearby clusters with a certain weight which is detailed in
the following subsection.

B. ANISOTROPIC WEIGHTING
For an image clustered based on luminance cues, the con-
tributions of illumination for the pixel location (x, y) from
the k th cluster is expressed by a weighted value for the local
SH as defined in (3). The weight should be monotonically
decreasing function with distance from the centroid of the
cluster. Since each cluster is not necessarily formed with
ellipsoidal shape, simply using the distance between the
centroid and a pixel location is not appropriate. Therefore,
we define the weight wk (x, y) in terms of a Gaussian with
the distance function of each cluster. The distance function
φk (x, y) computed for the cluster region �k is expressed
by the Euclidean distance d((x, y), ∂�k ) between the pixel
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location (x, y) and boundary ∂�k of the k th cluster as follows:

φk (x, y) =

{
−d ((x, y), ∂�k) (x, y) ∈ �k

d ((x, y), ∂�k) (x, y) /∈ �k ,
(4)

d ((x, y), ∂�k) = min
(x ′,y′)∈∂�k

∥∥∥∥(xy
)
−

(
x ′

y′

)∥∥∥∥
2
. (5)

Then, the distance function φk (x, y) is converted to the
zero-centered distance function φ′k (x, y) by subtracting min-
imum value of φk (x, y). In addition to the distance function,
we compute a local smoothness value ωj, which is defined as
the Chi-square distance of the luminance distribution between
the k th cluster and its adjacent clusters {j|j ∈ adj(k)}. The
weight ωj determines the width and smoothness of the weight
function in the direction of the jth adjacent cluster. This
prevents wk (x, y) from affecting regions with distinctive illu-
mination effects. As shown in Fig. 2, the adjacent cluster with
a small Chi-square distance has a wider and higher weight
value. Based on this distance function and local smoothness,
the anisotropic weight function of the k th cluster for the pixel
(x, y) for local SH is defined as

wk (x, y) = ωje−(φ
′
k ((x,y)))

2/2σ 2k , (6)

where σk is a control parameter that determines the radius
of the weight. To determine σk automatically, we adopt the
concept of the full width at half maximum. Let α be a desired
boundary value proportional to the maximumweight value of
the cluster. Then, σk is computed as follows:

σk =

 1
|∂�|

∑
(x,y)∈∂�

φ′k (x, y)

 /√(2 lnα). (7)

As shown in Fig. 2, excluding the regionwith flat illumination
in the second row, the computed weights are consistent with
the Gaussian and zero-centered distance function φ′k (x, y)
for adjacent regions with similar illumination effects, but fall
off significantly for other regions. For all experiments in this
paper, we empirically set α = 1.5.

IV. ALBEDO AND SHAPE RECOVERY
Because directly estimating facial shape and albedo from a
single image is infeasible, we utilize the prior face informa-
tion by fitting a 3DMM. In particular, the pose, expression,
and identity parameters of the 3DMM are estimated from
a given image with landmark points [39]. A weak perspec-
tive projection is assumed for the 3DMM fitting process.
To estimate the prior albedo, we choose initial illumination
coefficients as uniform white illumination by setting the
first coefficient of global SH as 2

√
π and setting all other

coefficients to zero, as described in [20]. Because the mesh
resolution of the model is insufficient for recovering facial
details, we apply the Loop subdivision [40] to the initial shape
model following initialization.

Based on the face region � identified by projecting an
initial face model, the estimation of illumination, albedo, and

normal from the image proceeds byminimizing the following
data term:

EI =
∑

(x,y)∈�

‖I(x, y)− ρ(x, y)L(x, y)‖2 . (8)

Because jointly optimizing the albedo, illumination coeffi-
cients, and surface normal in (8) is infeasible, we separate this
problem into estimating global-local illumination coefficients
Lk , LG, albedo ρ, and surface normal n(x, y) iteratively. Each
component is estimated by minimizing the (8) combining
with proper regularization terms. At the end of each iteration,
the vertex displacement with the computed normal is applied
by using the tetrahedron-based mesh deformation technique
[41]. To improve computational efficiency, we set N = 1 so
that each optimization can be conducted using a linear least-
squares solver, such as bi-conjugate gradient stabilized solver
[42]. Although higher-orders are desirable for the accurate
estimation of shape and albedo, we found that our model can
accurately reconstruct facial details even using the first-order
SH. An overview of the facial shape and albedo recovery
process is presented in Fig. 3.

A. ILLUMINATION ESTIMATION
For a given ρ(x, y) and n(x, y) computed from the initial-
ization or previous iteration, the illumination coefficients,
including global and local SH, are estimated jointly. In con-
junction with EI from (8), the objective function EL for the
illumination estimation step is defined as

EL = EI + λLc
∑
k∈C
‖lk‖2 + λLs

∑
(x,y)∈�

∇L(x, y)2, (9)

where λLc , λLs , and lk are the balancing weights for the
regularization and smoothness terms, as well as a vector
containing the illumination coefficients of (2) for the k th

cluster, respectively. Because a large value for the coefficients
of local SHwould affect the stability of the normal estimation
step, the coefficient regularization term constrains the coef-
ficients for local SH illumination to be small. Smoothness
term is introduced for enforcing the estimated illumination
smooth in the spatial domain. The illumination of the input
image is estimated by minimizing (9) with respect to the SH
coefficients of Lk and LG simultaneously.

B. ALBEDO ESTIMATION
After computing the global and local SH illumination coeffi-
cients, the albedo ρ(x, y) is computed. We incorporate addi-
tional regularization energy to enforce the smoothness of
the albedo according to the uniform Laplacian [44] of mesh
information of the face model. Additionally, facial albedo
priors from the MERL/ETH Skin Reflectance Database [43]
are adopted to prevent the computed albedo from overfitted
to the input image. Unlike the definition of facial segments
in this database, we merge some facial regions. Although
predefined segments can be obtained using facial landmarks,
this would produce an undesirable discontinuity between
contiguous segments. Therefore, we utilize the definition of
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FIGURE 4. Definition of facial segments. We divide a face into four
regions: lip, eyebrows, eyes, and facial skin. The corresponding histogram
in the (R,G,B) domain and its fitted GMM are visualized by marginalizing
it along G axis. Because there were no statistics for the eye region in [43],
we do not use the region for (12). Regarding the other segments,
the number of mixtures for each GMM is set to K = 3 for the lip and
eyebrows and K = 5 for the facial skin region.

segments for salient areas, including the eyebrows and lip,
while merging other facial skin regions into a single segment.
For each region, a prior distribution model of facial albedo
is computed by fitting the measured data to a GMM. The
definitions of each region and the computed GMM with the
number ofmodes are presented in Fig. 4. Finally, the objective
function Eρ for albedo estimation is defined as follows:

Eρ = EI + λpEp + λsEs. (10)

A smoothness term Es is introduced to obtain smooth albedo
as follows:

Es =
∑
i

∑
j∈N (i)

1
di

∥∥ρj − ρi∥∥2, (11)

whereN (i) and di represent the local connectivity around the
ith vertex and the normalizer, which represents the number of
vertices connected to the ith vertex, respectively. The albedo
prior term Ep, which is used to make the estimated albedo to
have higher likelihood in terms of GMM, is defined as

Ep =
∑
i

− log p(ρi), (12)

where p(ρi) is GMM computed by applying the expectation-
maximization method to the database.

Because (12) is non-convex, we use an iterative method
to relax the problem, as described in [45]. In each iteration,
we compute the weighted log-likelihood of the computed
albedo for the ith vertex with its adjacent vertices and derive
the mixture k∗ with the highest likelihood. By using the
chosen mixture k∗ with its mean µk∗ and variance 6k∗ ,
the equation can be converted into a linear form as follows:

Ep =
∑
i

(ρi − µk∗ )
T6−1k∗ (ρi − µk∗ ). (13)

In our experiments, five iterations were sufficient to achieve
convergence. It should be noted that (11) is similar to the
albedo regularization term proposed in [25], except that regu-
larization is applied in the vertex domain. Because the albedo
is estimated on the entire vertex, our formula can generate
smooth albedo across an entire face model. This is particu-
larly beneficial when visible triangles are updated during the
iteration by z-buffering.

C. NORMAL ESTIMATION
After both the global and local SH illumination coef-
ficients and albedo are estimated, we can compute the
triangle normal n(x, y). Because solely minimizing EI is
an under-constrained problem, the normal stabilization con-
straint defined as the difference between the estimated nor-
mal no(x, y) in the previous iteration and current normal
n(x, y) is applied to the objective function. Additionally,
the smoothness of the estimated normals is penalized by
adding a gradient term. The normal at each location (x, y)
is then computed using weights λno and λns by minimizing
the following energy formula:

En = EI + λno
∑

(x,y)∈�

∥∥n(x, y)− no(x, y)
∥∥2

+λns

∑
(x,y)∈�

‖∇n(x, y)‖2. (14)

Note that, a mapping between the triangle of shape model to
the location (x, y) at each iteration is computed by using z-
buffering. Since we use only first-order SH, minimizing (14)
is a linear least-squares problem that can be solved efficiently.

D. 3D SHAPE RECOVERY
In most SfS methods for single-view facial shape recovery,
the surface is reconstructed by computing a heightmap for
the computed normal map. Such methods compute a depth
value for each pixel location with assistance from a prior
face model [17], [25]. However, these methods take a lot of
time to converge, because these are formulated in a non-linear
least-square problem. Roth et al. [14] proposed a linear SfS
method based on mesh deformation using a surface Lapla-
cian. Although this method was developed for unconstrained
images, it is applicable to single-image face reconstruction
with an appropriate regularizer. However, it requires suit-
able re-meshing prior to optimization because the surface
Laplacian can be computed incorrectly around flat surfaces
due to the precision error of the processor. Since the surface
Laplacian is computed as the sum of the differences between
a vertex and its adjacent vertices, if the vertex lies on the
flat surface, the computed direction of Laplacian should be
a zero-valued vector. In practice, due to limited precision,
the Laplacian around a flat surface is a vector that has a
magnitude larger than zero in a random direction. Therefore,
the computed shape by using the surface Laplacian would be
severely distorted.
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FIGURE 5. Comparison of our deformation method with [14]. Without
adapting the mesh structure, tetrahedron-based deformation produces
accurate results, whereas the output of the Laplacian-based method is
severely distorted.

To address this issue, we propose a tetrahedron-based
deformation technique with triangle normals for the SfS pro-
cess. Once the normal at (x, y) is computed as in the previous
subsection, the 3D facial shape X is recovered by computing
the rotation of triangles of current facial shape Xc. For each
triangle, the target rotation matrix Rj

∈ SO(3) between the
current normal nj

c
and target normal nj of the jth triangle is

computed. The target normal can be computed easily by back-
projecting the 3D facial shape onto an image. The rotation
between two vectors can be expressed by a tetrahedron rep-
resentation [41] with vertices [xj1, x

j
2, x

j
3] defined as

V = [x j2 − x
j
1, x

j
3 − x

j
1, x

j
4 − x

j
1], (15)

where xj4 = x1 + nj is an additional vertex introduced to
define the tetrahedron. By using (15), the rotation matrix R̂j

between the current Vjc and target (Vj)−1 for the jth triangle
can be computed as

R̂j
= Vjc(Vj)−1. (16)

By using this representation, surface deformation can be
performed by minimizing the following objective function
Ed :

Ed =
∑
k

||Rj
− R̂j
||
2
F +

∑
i∈B
||xci − xi||22, (17)

where B is the set of boundary vertices of the 3D facial
shape. Because the first term in (17) can be converted into
a system of linear equations, we can solve this minimization
problem using the bi-conjugate gradient stabilized solver
[42]. Fig. 5 presents an example of recovering 3D shape
for input shape and target normal map by using the method
proposed in [14] without re-meshing and tetrahedron-based
method. Compared to the method proposed in [14], which
stretches or shrinks flat regions, such as the cheek and fore-
head, our method reliably and accurately recovers the target
shape from the given normal map.

V. EXPERIMENTS
In this section, we present comprehensive experimental
results. As an initial face model, we adopted the Basel
face model [46], which is a widely used statistical paramet-
ric model for the shape and albedo of a face. The initial
model with its projection parameters, including scale, trans-
lation, and rotation, was estimated using the 3DMM fitting
method described in [4] with detected landmarks from [39].
Our method was tested using several public datasets and
high-resolution photos from the internet. In all experiments,
the hyperparameters λLc , λLs , λp, λs, λno , and λns are set to 1,
2, 1, 5, 0.1, and 0.1 respectively.

FIGURE 6. Estimated results of facial albedo with a fixed number of
clusters (K = 100) and increasing N .

TABLE 1. Estimation errors in terms of RS-MSE, A-SSiM, and S-SSiM. The
error between K = 1 and others are distinguishable, while the errors
within K = 100 exhibit no significant difference with orders.

A. ALBEDO RECOVERY
To demonstrate the effectiveness of the proposed lighting
model, we tested our albedo recovery method, which was
described in Section IV-B, on the YaleB face database [47].
The YaleB face database contains images of faces captured
under different lighting conditions from a fixed viewing
angle. For each subject, we computed a ground truth albedo
using a generic photometric stereo technique based on the
given ambient intensity image and direction of a light source
for each image.

For the quantitative measure of estimated albedo
and shading, we adopted three different error metrics.
Reflectance/shading mean squared error (RS-MSE) is an
error metric introduced in [48] that measures locally scale-
invariant error for both reflectance and shading with values
between zero and one. For the estimated gray albedo ρ,
illumination (shading) L, and corresponding ground truth ρ∗,
L∗, the error is computed by summing the scale-invariant
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FIGURE 7. Example results for albedo and shading estimation with (K = 100,200) or without (K = 1) using the local SH lighting method. Effects such as
self-shadow and specular highlights on nose-tip are effectively suppressed with K = 200.

MSE e(x, x∗) for all local windows w of size 20 × 20 with
strides of 10 as follows:

RS-MSE(ρ,L) =
1
2

(
e(ρ, ρ∗)
e(ρ, 0)

+
e(L,L∗)
e(L, 0)

)
, (18)

e(x, x∗) =
∑
w∈W

min
a

∥∥axw − x∗w∥∥2. (19)

We also computed the SSiM [30], which is a measurement
of the perceptual quality error between two images. This
metric is sensitive to the local distortion of reconstructed
albedo and shading. A high value of the SSiM indicates that
a reconstructed signal is perceptually similar to the ground
truth. Note that, the resulting SSiM values were calculated
by averaging the SSiM values for all pixels in an image. The
SSiM values for the estimated albedo and shading are denoted
as A-SSiM and S-SSiM, respectively.

To assess the effects of local SH with varying orders,
we compared estimation results for albedo. We set the initial
number of clusters to K = 100 for SLIC segmentation in the
luminance domain. For orders of N = 1, 2, 4, 8, the results
for RS-MSE, A-SSiM, and S-SSiM are listed in Table 1.
Compared to the generic representation of illumination with
N = 2 and K = 1, the proposed representation produces
better results in terms of the error metrics. However, for RS-
MSE and A-SSiM, error increases with an order. Because
the proposed method estimates illumination in local regions,
rather than an entire image, the results with higher-order SH
could be biased to the appearance of local clusters, resulting
in distortion of the recovered albedo. For visual compari-

son, estimation results for albedo and shading are presented
in Fig. 6. Note that K = 1 corresponds to the model without
local SH (i.e., global illumination only). One can see that
there are no visible differences between the estimated albedo
with varying orders, except for the result of global illumina-
tionwithK = 1. Although there are no significant differences
with increasing order, the specular region around the nose tip
is diminished with the proposed method. These results serve
as experimental proof for the validity of using first-order SH
for local illumination, as discussed in Section IV.

TABLE 2. Average estimation errors for the YaleB face database. The
means and standard deviations of the error values are presented.

Based on the observation that local SH of the first
order provides sufficient quality for the estimated albedo,
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FIGURE 8. Comparison of results for 3D facial shape recovery from the Bosphorus database. We compare our proposed method to the methods proposed
by Jiang et al. [17], Deng et al. [49], and Chen et al. [36]. Note that ground truth was constructed by meshing the noisy depth map provided in the
database.

we present some example results with N = 1 in Fig. 7. For
albedo estimation with single SH with K = 1, the results
reveal albedo highlights stronger than the true albedo around
the specular regions, such as the nose tip and forehead.
In contrast, our method can capture the specular regions
more accurately, so specular highlights are suppressed com-
pared to the single SH case. Moreover, regions with self-
shadow can be effectively handled by our method. Except
for the regions which are not under-saturated, the pro-
posed method can recover the albedo accurately in softly
shadowed regions. Even the hard shadow regions can be

approximated using the albedo prior constraint introduced
in (13). The averages and standard deviations of RS-MSE,
A-SSiM, and S-SSiM are listed in Table 2. As the number
of divisions increases, better estimation results for albedo
and shading are obtained. It seems that the increment of
each SSiM value or decrement of RS-MSE with respect to
increasing K saturated after K = 100. We found that the
optimal number of clusters depends on the resolution of
an input image. For our experiments on HD images, local
SH with K = 300 are sufficient for producing acceptable
results.
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FIGURE 9. Results of the proposed albedo and shape recovery method for faces under natural illumination. Because the subject in the last row was
captured in an indoor environment, the estimated shading is darker than that in the other images.

B. 3D SHAPE RECOVERY
We tested the entire proposed process from illumination esti-
mation to 3D face shape recovery on images captured under
constrained illumination and natural images with N = 1

and the number of clusters K = 300. For images with
constrained illumination, we sampled several images from
the Bosphorus database [50], which provides structured-light
scanned 3D point clouds of the faces of 105 subjects, as well
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as corresponding RGB images. Note that, for the SfS-based
method without any metric information, such as the true
depth information of several points, error estimation using
MSE is unconvincing. Furthermore, the scanned point clouds
in the database are relatively noisy, making the quantitative
measurement of real data impractical. Therefore, we present
qualitative results for shape recovery with high-frequency
details and exclude quantitative measures.

Fig. 8 presents comparative results for several images from
the Bosphorus database for various methods. All of the com-
paredmethods are constructed using a single SH formodeling
the illumination. The method from [17] is an SfS method
that optimizes the height (depth) map using second-order
SH. Because this method uses albedo statistics from 3DMM
texture directly, the results exhibit over-smoothen geometry.
It seems that the smoothness constraint is over-weighted
because of the inaccurate estimation of albedo. The other
two results were generated using pre-trained deep-learning
models. While the method from [49] estimates the shape of a
face by inferring the shape parameters of a 3DMM, a detailed
facial shape with a UV displacement map is generated in [36].
Although ourmethod is based on iterative linear optimization,
the quality of the recovered 3D shapes is comparable to that
of the latest methods based on deep-learning.

We conducted further experiments on the photos taken
under natural illumination. The resulting shading, albedo,
and normal, as well as the recovered 3D shape of faces, are
presented in Fig. 9. One can see that the proposed local SH
model can effectively handle natural illumination. Therefore,
plausible results for albedo and normal, as well as detailed
facial geometry, such as wrinkles around the eye and fore-
head or beards, can be obtained.

VI. CONCLUSION
In this paper, we presented a novel 3D facial shape recovery
framework for a single image with a novel parameterization
of local SH illumination. The proposed local SH illumination
model with an anisotropic weighting strategy allows facial
albedo and 3D shape recovery to enhance the details of a
face while preventing noisy deformation. Additionally, shape
recovery using tetrahedron-based deformation facilitates reli-
able and accurate reconstruction for SfS with a prior face
model. Experimental results demonstrated that our method is
capable of recovering plausible facial albedo and 3D shape
with enhanced details compared to recent state-of-the-art
methods.

Nevertheless, the proposed local SHmethod is proven to be
robust to complex illumination in natural scenes, identifying
local regions by performing clustering based on pixel lumi-
nance may yield poor results. Because each local region is
computed based on its luminance discrepancies, the resulting
segmentation can produce regions containing rough geome-
try. Therefore, the geometry of the face should be incorpo-
rated in determining local clusters. This can be accomplished
by incorporating the geometrical information of the initial
shape using a graph-based optimization technique. Also, our

method can be combined with a statistical framework for
physically based facial skin reflectance, such as the frame-
work described in [51]. In future work, the proposed local
SH model could be extended by accounting for these consid-
erations.
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