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a b s t r a c t

Robust stability of the disturbance observer (DOB) control system is studied when the relative degree of
the plant is not the same as that of the nominal model. The study reveals that the closed-loop system can
easily become unstable with sufficiently fast Q-filter when the relative degree of the plant is not known.
In a few cases of unknown relative degree, however, robust stability can be obtained, and we present a
design guideline of the nominal model, as well as the Q-filter, for that purpose. Moreover, a universal
design of DOB is given for a plant whose relative degree is uncertain but less than or equal to four.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The disturbance observer (DOB) based controller has been
widely used among control engineers since it has a powerful abil-
ity of uncertainty compensation and disturbance attenuation. (See,
e.g., Kempf&Kobayashi, 1999, Kobayashi, Katsura, &Ohnishi, 2007,
Lee & Tomizuka, 1996, Wang & Tomizuka, 2004 and Yi, Chang, &
Shen, 2009 and references therein.) The standard DOB control sys-
tem is illustrated in Fig. 1. In the figure, P(s) and Pn(s) represent
the transfer functions of the uncertain plant and its nominalmodel,
and signals d and r represent the input disturbance and the refer-
ence, respectively. It is assumed that P(s) ∈ P whereP is a known
set of uncertain plants. The controller C(s) is designed for the nom-
inal model Pn(s). The Q -filter Q (s) is a stable low-pass filter, which
usually has the form (Choi, Yang, Chung, Kim, & Suh, 2003; Lee &
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Tomizuka, 1996; Shim & Jo, 2009) of

Q (s) =
bk(τ s)k + bk−1(τ s)k−1

+ · · · + b0
(τ s)l + al−1(τ s)l−1 + · · · + a1(τ s) + a0

(1)

where τ > 0 is the filter time constant, k and l are nonnegative
integers with bk ≠ 0. We assume a0 = b0 and l − k ≥ r.deg(Pn),
where r.deg(Pn) stands for relative degree of Pn.

The output y is represented as y(s) = Tyr(s)r(s) + Tyd(s)d(s)
where Tyr is the transfer function from r to y and so on. For
sufficiently small τ > 0, it can be shown that Tyr(jω) ≈ PnC/(1 +

PnC)(jω) and Tyd(jω) ≈ 0 on a finite frequency range, which im-
plies the recovery of the nominal closed-loop steady-state perfor-
mance. (See, e.g., Shim & Jo, 2009 and Shim & Joo, 2007 for more
details.) This property holds only when all the transfer functions
are stable. Therefore, the question of interest is the robust stability
of the closed-loop system in Fig. 1 under the variation of P(s) ∈ P ,
which depends on the selection ofQ (s) and Pn(s). This question has
been studied under the perspective of small-gain theorem in Choi
et al. (2003), Kim and Chung (2003), Kong and Tomizuka (2013)
and Schrijver and van Dijk (2002), where only a sufficient stabil-
ity condition is presented that is conservative in nature. On the
other hand, some necessary and sufficient condition for robust sta-
bility is presented in Shim and Jo (2009) and Shim and Joo (2007)
under the assumption that the time constant of the Q -filter is
sufficiently small, which has played a key role in extending to non-
linear systems (Back & Shim, 2008) and embedding an internal
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Fig. 1. Structure of the DOB control system. The shaded region represents the real
plant P(s) augmented with the DOB.

model into the DOB structure (Park, Joo, Shim, & Back, 2012). How-
ever, the study of Back and Shim (2008), Park et al. (2012), Shim
and Jo (2009) and Shim and Joo (2007) assumes that the relative
degree of plant is the same as that of nominal model.

In this paper,2 we study the robust stability of the DOB-based
control system (Fig. 1) when the relative degree of plant is not
exactly known and so it happens to be different from that of nom-
inal model. This case often occurs in real world control appli-
cations. For instance, r.deg(P) > r.deg(Pn) when the actuator
dynamics is ignored, or when there is unmodeled dynamics for
the plant. Inspired by the fact that the characteristic equation for
stability is of the form that appears in the ‘higher-order root locus
technique’ (Hahn, 1981), a condition for robust stability is derived
by utilizing the Newton diagram. The derived condition reveals a
few facts such as: (1) if r.deg(P) = r.deg(Pn) + 1, robust stabil-
ity can be achieved by an appropriate design of Pn as well as Q .
(2) If 1 ≤ r.deg(P) ≤ 2, then robust stability is always achiev-
able. (3) If r.deg(P) ≥ r.deg(Pn) + 2 or r.deg(Pn) > r.deg(P) > 2,
then robust stabilization is not possiblewith sufficiently small τ no
matter how Pn, C , and Q are selected. A universal design of DOB is
also discussed for the special case where r.deg(P) is unknown but
1 ≤ r.deg(P) ≤ 4.

Notation. Let D(s) be a polynomial with real coefficients ex-
pressed as D(s) = dnsn +dn−1sn−1

+· · ·+d1s+d0. The polynomial
D(s) is said to be of degree n if dn ≠ 0, which will be denoted by
deg(D) = n. For a transfer functionG(s) = N(s)/D(s) (it is assumed
that N(s) and D(s) are coprime polynomials), the degree and the
relative degree of G(s) are defined as deg(D) and deg(D)−deg(N),
respectively, and the latter will be denoted by r.deg(G). The high-
frequency gain of G(s) is defined as lims→∞ sr.deg(G)G(s) and de-
noted by κ(G). Finally, LHP (RHP, respectively) stands for the open
left (right, respectively) half plane.

2. Robust stability

We assume that P(s) and Pn(s) are strictly proper while C(s)
is proper. Let P , Pn, C , and Q in Fig. 1 be represented by the ra-
tios of coprime polynomials, that is, P(s) = N(s)/D(s), Pn(s) =

Nn(s)/Dn(s), C(s) = Nc(s)/Dc(s), andQ (s) = NQ (s; τ)/DQ (s; τ) (in
which, the dependence of NQ and DQ on τ is explicitly indicated).
Moreover, we assume that there is no unstable pole-zero cancella-
tion in Pn(s)C(s) and in P−1

n (s)Q (s). Then, it can be shown that, for
given τ > 0, the closed-loop system is internally stable if and only
if the characteristic polynomial

δ(s; τ) := (DDc + NNc)NnDQ + NQDc(NDn − NnD)

2 Preliminary versions of this paper have been presented at Int. Conf. on Control,
Automation and Systems, 2011, where the Q -filter is just a first order system and the
relative degree of Pn is limited to one, and at 51st IEEE Conf. on Dec. and Control, 2012,
where the case r.deg(P) < r.deg(Pn) is not considered.

is Hurwitz. Define

pα(s) := N(NcNn + DcDn)

pβ(s) := Nn(NcN + DcD)
(2)

and let mα := deg(NDcDn), mβ := deg(NnDcD), and αi, βi be such
that

pα(s) = αmα s
mα + αmα−1smα−1

+ · · · + α0

pβ(s) = βmβ
smβ + βmβ−1smβ−1

+ · · · + β0.

It should be kept in mind that mβ − mα = r.deg(P) − r.deg(Pn),
and that βmβ

/αmα = κ(Pn)/κ(P). Let k̄ (≤k) be such that a0 =

b0, . . . , ak̄ = bk̄, and ak̄+1 ≠ bk̄+1 in Q (s). Then, it follows that
(with al = 1 for convenience)

δ(s; τ) = pβ(s)DQ (s; τ) + (pα(s) − pβ(s))NQ (s; τ)

= pβ(s)
l

i=0

ai(τ s)i + (pα(s) − pβ(s))
k

i=0

bi(τ s)i

=

k̄
i=0

(τ s)iaipα(s) +

k
i=k̄+1

(τ s)i

aipβ(s)

+ bi(pα(s) − pβ(s))

+

l
i=k+1

(τ s)iaipβ(s). (3)

Note that deg(δ(s; τ)) = l + mβ if τ > 0, and the locations of
l + mβ roots, when τ is sufficiently small, are of interest. Since
δ(s; 0) = a0pα(s) and deg(δ(s; 0)) = mα , it is clear that mα roots
out of l+mβ roots of δ(s; τ) converge to the roots of pα(s) as τ → 0,
while the remaining l + mβ − mα roots tend to infinity (see Shim
& Jo, 2009 for more rigorous arguments).

Here we recall the result of Shim and Jo (2009), with the set P
being a collection of transfer functions whose coefficients belong
to certain (known) bounded intervals.

Proposition 1 (Shim & Jo, 2009). Suppose that r.deg(P) = r.deg
(Pn) for all P(s) ∈ P . Then, there exists a constant τ ∗ > 0 such that,
for all 0 < τ ≤ τ ∗, the closed-loop system is robustly stable if all the
following conditions hold:

(H1) all P(s) ∈ P are of minimum phase,
(H2) the transfer function PnC/(1 + PnC) is stable,
(H3) the polynomial

pf(s) := DQ (s; 1) +


lim
s→∞

P(s)
Pn(s)

− 1

NQ (s; 1)

is Hurwitz for all P(s) ∈ P .

On the contrary, for given P ∈ P , there is τ ∗ > 0 such that, for all
0 < τ ≤ τ ∗, the closed-loop system is unstable if PnC/(1 + PnC)
has some poles in the RHP, or some zeros of P(s) or some roots of
pf(s) = 0 are located in the RHP.

Remark 2. It is observed that the conditions (H1) and (H2) are
equivalent to pα(s) being Hurwitz (see (2)), so that mα roots of
δ(s; τ)have negative real parts for sufficiently small τ . On the other
hand, the condition (H3) constrains the other l+mβ−mα = l (since
mβ = mα if r.deg(P) = r.deg(Pn)) roots to remain in the LHP.

Note that Proposition 1 is not conclusive when any one of
conditions is marginal (e.g., if some roots of pf(s) are located on
the imaginary axis), by which the condition is ‘almost’ necessary
and sufficient. It is inconclusive particularly when r.deg(P) >
r.deg(Pn) because lims→∞ P(s)/Pn(s) = 0 so that pf(s) has at least
one root at the origin of complex plane (recall that a0 = b0). The
polynomial pf(s) is not even defined when r.deg(P) < r.deg(Pn).
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When r.deg(P) ≠ r.deg(Pn), the l + mβ − mα roots of δ(s; τ),
that go to infinity as τ → 0, are of particular interest. To see their
behavior conveniently, wewant tomake themgo to zero as τ → 0.
This is done by defining δ̄(s; τ) := sl+mβ δ(1/s; τ). Then,

δ̄(s; τ) = q̄0(s) + τ q̄1(s) + · · · + τ lq̄l(s), (4)

q̄i(s) =



ai

αmα s

l+mβ−mα−i
+ · · · + α0sl+mβ−i

i = 0, 1, . . . , k̄
(ai − bi)(βmβ

sl−i
+ · · · + β0sl+mβ−i)

+ bi(αmα s
l+mβ−mα−i

+ · · · + α0sl+mβ−i)

i = k̄ + 1, k̄ + 2, . . . , k
ai(βmβ

sl−i
+ · · · + β0sl+mβ−i)

i = k + 1, k + 2, . . . , l.

Since Re(s) < 0 if and only if Re(1/s) < 0 for a complex vari-
able s, stability analysis using δ̄, instead of δ, is justified. As τ → 0,
l+mβ −mα roots of δ̄ are converging to zero whereas the remain-
ing roots converge to mα nontrivial roots of q̄0(s). From now on,
the former are called as vanishing roots while the latter as non-
vanishing roots. Since q̄0(s)/sl+mβ−mα = a0(αmα + · · · + α0smα ),
the non-vanishing mα roots have negative real parts if and only if
pα(s) is Hurwitz. Hence, paying attention to the vanishing roots,we
can obtain the following Theorems 3 and 4 (for the case r.deg(P) >
r.deg(Pn)) and Theorems 5 and 6 (for r.deg(P) < r.deg(Pn)), whose
proofs are given in Section 4.

Theorem 3. Suppose that r.deg(P) = r.deg(Pn) + 1, ∀P ∈ P . Then,
there exists τ ∗ such that, for all 0 < τ ≤ τ ∗, the closed-loop system
is robustly stable if both (H1) and (H2) hold and the following three
conditions hold:

(i) π(s) := sl−1
+ · · · + ak+1sk + (ak − bk)sk−1

+ · · · + (a1 − b1)
is Hurwitz,

(ii) κ(P) and κ(Pn) have the same sign (i.e., αmαβmβ
> 0), ∀P ∈ P ,

(iii) σ+ :=
αmα−1
αmα

−
βmβ−1

βmβ
+

αmα

βmβ

a0
a1−b1


a2−b2
a1−b1

−
b1
a0


< 0,3 ∀P ∈ P .

As will be discussed in Section 3, the condition (iii) reveals that
Pn should be carefully chosen for the robust stability, which is not
the case in Shim and Jo (2009) where r.deg(P) = r.deg(Pn). The
conditions of Theorem 3 are almost necessary and sufficient in the
following sense.

Theorem 4. For given P ∈ P with r.deg(P) > r.deg(Pn), the closed-
loop system is unstable for sufficiently small τ if one of the following
holds: (a) r.deg(P) ≥ r.deg(Pn) + 2, (b) P has at least one RHP
zero (violation of (H1)), (c) PnC/(1+ PnC) has at least one RHP pole
(violation of (H2)), (d) π(s) has at least one RHP root, (e) αmαβmβ

<

0, (f) σ+ > 0, (g) k̄ > 0.

Theorem 5. Suppose that r.deg(P) < r.deg(Pn), ∀P ∈ P . Then,
there exists τ ∗ such that, for all 0 < τ ≤ τ ∗, the closed-loop system
is robustly stable if both (H1) and (H2) hold, and, for all P ∈ P ,

(i) r.deg(Q ) ≤ r.deg(Pn) − r.deg(P) + 2,
(ii) NQ (s; 1) is Hurwitz (or a constant),
(iii) κ(P) and κ(Pn) have the same sign (i.e., αmαβmβ

> 0) if
r.deg(Q ) ≥ r.deg(Pn) − r.deg(P) + 1,

(iv) σ− := bk−1−al−1bk < 0 if r.deg(Q ) = r.deg(Pn)−r.deg(P)+
2 and k ≥ 1.

Since r.deg(Q ) ≥ r.deg(Pn), the condition (i) of Theorem 5
imposes the restriction that r.deg(P) ≤ 2.

3 b1 = 0 if b1 is not present in (1), and so on.

Theorem 6. For given P ∈ P with r.deg(P) < r.deg(Pn), the
closed-loop system is unstable for sufficiently small τ if one of the
following holds: (a) r.deg(Q ) ≥ r.deg(Pn) − r.deg(P) + 3, (b) P
has at least one RHP zero, (c) PnC/(1 + PnC) has at least one RHP
pole, (d) NQ (s; 1) has at least one RHP root, (e) αmαβmβ

< 0 while
r.deg(Q ) ≥ r.deg(Pn)− r.deg(P)+ 1, (f) σ− > 0while r.deg(Q ) =

r.deg(Pn) − r.deg(P) + 2 and k ≥ 1.

According to Theorems 4 and 6, if r.deg(P) ≥ r.deg(Pn) + 2
or r.deg(Pn) > r.deg(P) > 2, the closed-loop system cannot be
stabilized, with sufficiently small τ , no matter how C , Pn, and Q
are chosen.

3. A guideline for selecting Q and Pn

The theorems in the previous section suggest some design
guidelines for Q and Pn. For example, if the relative degree of the
unknown plant is ensured to be less than or equal to two with
known sign of high-frequency gain, then simply choose Pn such
that r.deg(Pn) ≥ 3 with the same sign of high-frequency gain, and
design Q with k = 0 and l = r.deg(Pn). Then, it is easily seen that
all the conditions of Theorem 5 are satisfied.

The condition (iii) of Theorem 3 also allows the following
interpretation. Let Kp denote the high-frequency gain of the
plant P(s), and its numerator and the denominator be written as
N(s) = Kp(skp + bpskp−1

+ · · ·) and D(s) = slp + apslp−1
+

· · ·, respectively. Similarly, Kc, Kn, kc, lc, kn, ln, ac, bc, an, and
bn are all defined from C(s) and Pn(s). Moreover, let µ(P) =

(sum of all zeros of P) − (sum of all poles of P) = −bp + ap. Now,
suppose that r.deg(PnC) ≥ 2 and KnKp > 0 (same sign of high-
frequency gains). Then, sincemα = kp+ln+lc andmβ = kn+lp+lc,
it follows that pα(s) = Kp[smα + (an + ac + bp)smα−1

+ · · ·] and
pβ(s) = Kn[smβ + (ap + ac + bn)smβ−1

+ · · ·]. Thus, (iii) becomes

µ(Pn) +
Kp

Kn

a0
a1 − b1


a2 − b2
a1 − b1

−
b1
a0


< µ(P). (5)

Therefore, as poles (zeros, respectively) of Pn are placed further
right (left, respectively), it becomes more beneficial for robust
stability. However, this may make the design of C(s) more difficult
since the control of stable plant is easier than that of unstable plant.
It should be noted that the controller C(s) does not affect (5).

3.1. A robust controller for uncertain plant with relative degree up to
four

For given uncertain minimum phase plant P(s), if r.deg(P) ≤

4 and the sign of κ(P) is known, then a robust controller can
be designed, which is ‘universal’ in the sense that it applies to
the plant of any order and of any bounded (but arbitrarily large)
uncertainty. Just by reducing the parameter τ , robust stabilization
is achieved.

Let µ̄(P ) := minP∈P µ(P) and K̄p := maxP∈P |κ(P)|. Pick Kn

such that it can be an arbitrary constant but has the same sign as
κ(P). Let Q (s) = a0/((τ s)3 + a2(τ s)2 + a1(τ s) + a0), where a1
and a2 are selected such that s2 + a2s + a1 = π(s) is Hurwitz
and a0 > 0 is chosen sufficiently small such that pf(s) = s3 +

a2s2 + a1s + (Kp/Kn)a0 is Hurwitz for all |Kp| ≤ K̄p. In fact, it holds
if 0 < a0 < a1a2Kn/K̄p, which is found, e.g., by the Routh–Hurwitz
test. Now, choose the high-frequency gain of the nominal plant Pn
as Kn, and select poles and zeros of Pn such that r.deg(Pn) = 3 and

µ(Pn) +
K̄p

Kn

a0a2
a21

< µ̄(P )
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Fig. 2. Newton diagram for δ̄(s; τ) in (4) when r.deg(P) > r.deg(Pn) (i.e., mβ >

mα).

is satisfied.With this Pn, C is designed such that it stabilizes Pn. The
remaining freedom of choice for Pn and C can be used to satisfy
given performance specifications. With the design, robust stability
follows from themain theorems. (For instance, if r.deg(P) is 1 or 2,
all the conditions of Theorem 5 are satisfied.)

4. Technical proofs

The conditions regarding (H1) and (H2) in all theorems follow
from the same arguments as in Remark 2, which are related to the
polynomial pα(s). Therefore, the proof is mainly to investigate the
behavior of l + mβ − mα vanishing roots of δ̄(s; τ) in (4) and to
see if they remain in the LHP while converging to the origin. The
study could have been facilitated if there is no higher-order terms
of τ in δ̄(s; τ) except the first order one because the classical root-
locus method could be employed. However, since this is not the
case, we invoke the method of Newton diagram, inspired by the
higher-order root-locus method in Hahn (1981).

Proof of Theorem 4. The vanishing roots of δ̄(s; τ) have the form
of s∗(τ ) = γ τ c

+ o(τ c) where o(τ c) represents the terms having
higher order of τ than c > 0, and γ is a non-zero constant. To find
c and γ , the Newton diagram4 of δ̄(s; τ) is drawn as in Fig. 2, where
it is seen that there are two groups of roots. The first group consists
of l− k̄−1 roots of the form γaτ

1
+o(τ 1) and the second group has

mβ − mα + k̄ + 1 roots of the form γbτ
(k̄+1)/(mβ−mα+k̄+1)

+ o(· · ·).
It is also seen that γa and γb satisfy the following two equations,
respectively:

φa(γ ) = βmβ


l

i=k+1

aiγ l−i
+

k
i=k̄+1

(ai − bi)γ l−i


= 0,

φb(γ ) = (ak̄+1 − bk̄+1)βmβ
+ αmαa0γ

mβ−mα+k̄+1
= 0.

For stability, all the roots of φa and φb need to be located in LHP
because they determine the location of s∗(τ ) for sufficiently small

4 The non-zero coefficient of the term τ jsi is marked as × in the coordinate (i, j).
Then, a convex hull of all marked × is considered, and the line segments with
different slopes, located on the boundary in the lower-left side, are found. (La and Lb
in Fig. 2.) Let N be the number of such line segments. From the figure, the following
facts are read out: (i) the total number of roots converging to zero as τ → 0 is
the index of the leftmost × in the row of τ 0 (which is l + mβ − mα in Fig. 2). (ii)
These roots are divided by N groups. (iii) For each group, there is m roots of the
form s∗i (τ ) = γiτ

c
+ o(τ c), 1 ≤ i ≤ m, where c = −(slope of the line segment)

and m is the difference between the horizontal indices of the rightmost mark and
the leftmost mark in the line segment. (iv) The value of γi is determined by finding
roots of them-th order polynomial φ(γ ) whose coefficients are the values of those
marks that touch the corresponding line segment.

Fig. 3. Newton diagram for δ̂(ŝ; τ̂ )/τ̂ l+1 .

τ . It is clear that a necessary condition for stability ismβ −mα + k̄
is at most one, because, if not, at least one root of φb(γ ) is in
RHP. This explains the conditions (a) and (g). Now assumingmβ −

mα = 1 and k̄ = 0, (d) ((e), respectively) implies a solution to
φa(γ ) = 0 (φb(γ ) = 0, respectively) is in RHP (since φa(γ ) =

βmβ
γ l−1π(1/γ )). If βmβ

/αmα > 0, the second group has two roots

s∗(τ ) = ±iγ̄ τ 1/2
+ o(τ 1/2) where γ̄ =


(a1 − b1)βmβ

/(a0αmα ).
With this, stability is inconclusive and we need to inspect higher
order terms.

We let5 s∗(τ ) = (iγ̄ + ŝ(τ ))τ 1/2 where ŝ is a continuous func-
tion to be found such that ŝ(0) = 0. Define τ̂ = τ 1/2 and A(τ̂ ) =

iγ̄ + ŝ(τ̂ 2) for convenience, and regard δ̄(s∗(τ̂ 2); τ̂ 2) as a polyno-
mial of ŝwith the parameter τ̂ , that is, from (4),

δ̄(s∗(τ̂ 2); τ̂ 2) = a0

αmαA

l+1τ̂ l+1
+ αmα−1Al+2τ̂ l+2

+ · · ·


+ (a1 − b1)

βmβ

Al−1τ̂ l+1
+ βmβ−1Alτ̂ l+2

+ · · ·


+ b1

αmαA

lτ̂ l+2
+ αmα−1Al+1τ̂ l+3

+ · · ·


+ (a2 − b2)

βmβ

Al−2τ̂ l+2
+ βmβ−1Al−1τ̂ l+3

+ · · ·


+ b2

αmαA

l−1τ̂ l+3
+ · · ·


+ · · · =: δ̂(ŝ; τ̂ ).

Collecting the terms in increasing order of τ̂ , it becomes

δ̂(ŝ; τ̂ ) = τ̂ l+1a0αmαA
l+1

+ (a1 − b1)βmβ
Al−1

+ τ̂ l+2a0αmα−1Al+2
+ ((a1 − b1)βmβ−1 + b1αmα )Al

+ (a2 − b2)βmβ
Al−2

+ τ̂ l+3
· · ·

+ · · · .

By expanding with A = iγ̄ + ŝ(τ̂ 2), it is seen that the constant term
(with respect to ŝ) in the coefficient of τ̂ l+1 (the lowest power of τ̂ )
is zero by the definition of γ̄ . With this fact, the Newton diagram of
δ̂(ŝ; τ̂ )/τ̂ l+1 (Fig. 3) suggests that it has one root ŝ∗(τ̂ ) of the form
γ̂ τ̂ 1

+ o(τ̂ 1) and γ̂ is the root of

φ̂(γ̂ ) =


αmα−1β

2
mβ

(a1 − b1)2

α2
mα

a0
−

(a1 − b1)2βmβ
βmβ−1

αmαa0

−
(a1 − b1)b1βmβ

a0
+ (a2 − b2)βmβ


− 2(a1 − b1)βmβ

γ̂ .

The condition (f) implies that γ̂ is in RHP, and so is s∗(τ ) = iγ̄ τ 1/2
+

γ̂ τ 1
+ o(τ 1) as τ → 0.

Proof of Theorem 3. Conclusions of Theorem 3 are easily derived
from the proof of Theorem 4. Indeed, by the condition (i), it follows
that a1 − b1 > 0 and k̄ = 0, which yields φb(γ ) = (a1 − b1)βmβ

5 As for the casewhere s∗(τ ) = (−iγ̄ +ŝ(τ ))τ 1/2 , the same conclusion is obtained
and the details are omitted.
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+ αmαa0γ
2. Then, the conditions (ii) and (iii) ((i), respectively)

imply that all the roots of φb (φa, respectively) are located in LHP.

Proof of Theorems 5 and 6. The proofs have to be omitted due to
page limitation. They are however available upon request, or at
http://hdl.handle.net/10371/91261.

5. Concluding remarks

We have studied the robust stability of the DOB control system
when the relative degree of the plant is not the same as that of the
nominalmodel. By introducing themethod of theNewtondiagram,
whose utility became apparent in conjunction with stability anal-
ysis of DOB, the following facts are revealed under the assumption
of small time constant of Q -filter. If r.deg(P) = r.deg(Pn) + 1, ro-
bust stability can be achieved by an appropriate design of Pn aswell
as Q . If 1 ≤ r.deg(P) ≤ 2, then robust stability is always achiev-
able. If r.deg(P) ≥ r.deg(Pn) + 2 or r.deg(Pn) > r.deg(P) > 2,
then robust stabilization is not possible no matter how Pn, C , and
Q are selected. The lesson of the study is that one needs to estimate
the relative degree of the plant as close as possible, because, if not,
robust stability may not be achievable with sufficiently small time
constant of the Q -filter.
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