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Background and Objectives: A robust vessel segmentation and tracking method based on a particle-filtering 

framework is proposed to cope with increasing demand for a method that can detect and track vessel 

anomalies. 

Methods: We apply the level set method to segment the vessel boundary and a particle filter to track 

the position and shape variations in the vessel boundary between two adjacent slices. To enhance the 

segmentation and tracking performances, the importance density of the particle filter is localized by es- 

timating the translation of an object’s boundary. In addition, to minimize problems related to degeneracy 

and sample impoverishment in the particle filter, a newly proposed weighting policy is investigated. 

Results: Compared to conventional methods, the proposed algorithm demonstrates better segmentation 

and tracking performances. Moreover, the stringent weighting policy we proposed demonstrates a ten- 

dency of suppressing degeneracy and sample impoverishment, and higher tracking accuracy can be ob- 

tained. 

Conclusions: The proposed method is expected to be applied to highly valuable applications for more 

accurate three-dimensional vessel tracking and rendering. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

With the ongoing increase in life expectancy, cardio-vascular

iseases have become the leading cause of death worldwide [1] .

herefore, there is an increasing demand for a method that can

etect and track cardiac anomalies. Coronary artery anomaly de-

ection considerably influences diagnoses because the coronary

rtery supplies blood to the heart muscle. Thus, the ability to seg-

ent the artery is essential for accurately detecting calcification

r stenosis. However, the contrast of any coronary artery image is

ow in computed tomography/magnetic resonance imaging; thus, it

s difficult to autonomously segment or track the vessel with high

ccuracy. Consequently, multiple studies have considered applying

ctive vision to biological image processing in order to address the

roblems associated with artery segmentation and tracking [2] . 

Typically, blood-vessel segmentation technologies involve seg- 

entation of each medical image slice and tracking of the object

etween the slices . One of the most representative segmentation

ethods is the level set method [3] , which enables implicit rep-

esentation of the objects’ contours . To segment an object using

he level set method, an initial contour is deformed until it mini-
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izes the energy functional based on the features of the desired

bject. Various models can be used to determine the energy

unctional, such as the edge-based [4,5] and region-based mod-

ls [6–8] . Among these, one of the most popular is the Chan–Vese

CV) model [7] , which is based on Mumford–Shah segmentation

echniques [6] and has been successfully applied to binary phase

egmentation. 

Many segmentation methods are based on the CV model [9–13] .

owever, these methods segment a vessel boundary by minimizing

he energy functional at each frame; thus, they do not incorporate

otion dynamics between frames into their tracking frameworks.

t best, only discrete snapshots of the target object’s location are

rovided and no dynamic or morphological consistency can be en-

orced. Thus, in addition to the two-dimensional segmentation in-

ormation, the explicit introduction of dynamics to the curve evo-

ution law should significantly improve vessel tracking [11] . 

With regard to tracking, extant research has primarily focused

n Kalman filtering [14,15] wherein a series of tracking states is de-

ned using a linear state-space model. However, a simple assump-

ion of linearity cannot be applied to vessel segmentation due to

he irregular variations in a vessel, such as sudden scale variation,

irection change, and presence of bifurcations [16] . To overcome

his problem, various extensions of the Kalman filter have been de-

ised to track nonlinear systems, and the particle filter (PF) is one

f the most successful schemes [17] . 

http://dx.doi.org/10.1016/j.cmpb.2017.06.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
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Localization of importance function by utilizing
• Prior information of the system dynamics and
• Observed information on current slice

Stringent weighting policy using
• Legacy contour energy and
• Accuracy information of the prior estimation

• Enhancing PF tracking accuracy while reducing its computational load

• Proper maintenance of variance of the weights while decreasing the number of resamplings

Fig. 1. Main contributions of the proposed segmentation and tracking (SNT) framework: accuracy enhancement and alleviating degeneracy and sample impoverishment of a 

particle filter (PF). 
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Many studies have focused on combining a PF with a contour

deformation method [18–21] . In [21] , the authors proposed a PF al-

gorithm using the CV method to track moving and deforming ob-

jects. In that study, a PF was used to estimate the affine motion

parameters that determine the global rigid motion of an object be-

tween two subsequent images. Then, the CV method was used to

track the local deformation, which is the non-affine deformation

of the contour. This concept of global motion tracking with local

affine warping has been adopted by many general contour-tracking

applications [22,23] ; however, it has not yet been widely consid-

ered for vessel segmentation. Moreover, although the use of a PF

has demonstrated considerable success in tracking literature, it in-

curs some fatal problems due to its suboptimal sampling mecha-

nism in the importance sampling process, such as degeneracy and

sample impoverishment problems [24–27] . 

The degeneracy problem involves a situation in which only

a few particles have significant weights; thus variance between

weights increases. This can be addressed by increasing the num-

ber of samples; however, this may be impractical [28] . Degeneracy

can also be minimized by resampling or localizing the importance

function. On the other hand, sample impoverishment occurs when

particle diversity is reduced. With a resampling strategy, particles

with large weights are likely to be drawn multiple times. If the

number of resamplings can be reduced, the sample impoverish-

ment problem can be mitigated. In such a case, a stringent weight-

ing policy to decrease weight variances should provide an effective

solution. 

In this paper, we present a vessel segmentation and tracking

(SNT) method based on the CV method to find the vessel contours

in each slice and a PF to track vessel contours between slices. We

also present a method to enhance SNT accuracy and reduce degen-

eracy and sample impoverishment problems. The main contribu-

tions of the framework proposed in this paper are shown in Fig. 1

and summarized below . 

• Localization of importance function : To reduce the variance

in the particle weights and localize the importance function,

additional observed information is incorporated into the known

process dynamics. In this way, an object’s motion and location

between slices can be estimated more precisely. Moreover, be-

cause location can be accurately predicted, the number of iter-

ations of the CV method can be effectively reduced, and the

overall computational load of the SNT algorithm can be de-

creased . 
• Stringent weighting policy : To decrease the number of resam-

plings in the PF framework, it is important to adequately main-

tain variance in the weights. Thus, the particle importance must

be evaluated very carefully. In the PF framework, the energy

functional of contour deformation is generally applied to the

calculation of particle weights. However, we introduce infor-

mation about the object location prediction accuracy between

slices. Through the application of this policy, it is possible to
discriminate between particle weights, and thus maintain the

variance. 

The remainder of this paper is organized as follows. In

ection 2 , we introduce the PF and CV methods. The motivation

ehind the proposed method is given in Section 3 . A detailed ex-

lanation of the proposed model is presented in Section 4 . The

imulation environment is described in Section 5 . In Section 6 , we

pply the proposed model to synthetic and real medical images

nd show the results, and analyze and discuss them in Section 7 .

onclusions are presented in Section 8 . 

. Methods and problems 

.1. Particle filtering 

A PF is a sequential Monte Carlo framework in which the key

dea is to represent the required posterior density function by a

et of random samples with associated weights [27] . Here, let X t 

nd Z t be the state and measurement , respectively, at time index t .

he unknown state is usually estimated by the posterior density

unction p ( X t | Z 1: t ) which can be calculated recursively using the

ollowing Bayesian formula: 

p( X t | Z 1: t ) ∝ p( Z t | X t ) 

∫ 
p( X t | X t−1 ) p( X t−1 | Z 1: t−1 ) d X t−1 . (1)

In the PF framework, (1) is approximated recursively using a set

f particles. Let N s be the number of particles, and 

{
X (n ) 

t , ω 

(n ) 
t 

}N s 

n =1 
e the set of particles and corresponding weights describing their

elevance. Then, (1) is approximated as follows: 

p( X t | Z 1: t ) � 

N s ∑ 

n =1 

ω 

(n ) 
t δ

(
X t − X 

(n ) 
t 

)
(2)

here δ( ·) denotes the Dirac delta measure. With this particle ap-

roximation, object-tracking is performed by the following proce-

ure: 

• Prediction : move the swarm of particles based on the dynam-

ics as 

X 

(n ) 
t ∼ q ( X t | X 

(n ) 
t−1 

, Z t ) . (3)

• Update : calculate the particle weights based on the likelihood

as 

ω 

(n ) 
t ∝ ω 

(n ) 
t−1 

· p( Z t | X 

(n ) 
t ) (4)

here q ( ·) is the importance density . Note that the selection of

mportance density significantly affects PF tracking accuracy. The

bovementioned PF is known as the sequential importance sam-

ling (SIS) algorithm [28] . If the importance function is set to

 ( X t | X (i ) 
t−1 

, Z t ) = p( X t | X (n ) 
t−1 

) , the SIS algorithm becomes a bootstrap

lter , which is the most common choice. The main advantage of
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 bootstrap filter is its simple implementation because it only re-

uires sampling from the distribution p(X t | X (n ) 
t−1 

) and the evalua-

ion of p( Z t | X (n ) 
t ) [29] . However, it incurs the following disadvan-

ages. 1) The prediction step uses only the previous state and does

ot consider the observed information, and 2) a degeneracy prob-

em can arise. In other words, after a few iterations, most parti-

les have negligible weights; thus significant computational effort

s required to update particles with a very small contribution to

osterior density. 

.2. Chan–Vese level set method 

For a variational level set formulation, Chan and Vese proposed

egion-based image segmentation [7] . This approach has become

ery popular in the image processing community mainly due to its

bility to detect objects not necessarily defined by a gradient. The

asic concept of the segmentation method is to divide a particu-

ar partition of a given image I into two regions, where one region

epresents the objects to be detected and the other region repre-

ents the background. Then, the contour of the object is defined

s the boundary between these two regions . For a given image I ,

hey proposed minimizing the following energy functional: 

 CV ( �, I ) = λ1 

∫ 
�

(I − c 1 ) 
2 
H(�) d xd y 

+ λ2 

∫ 
�

(I −c 2 ) 
2 
( 1 −H(�) ) d xd y + ν

∫ 
�

| ∇H(�) | d xd y 

(5) 

here � is the image domain, and λ1 , λ2 , and ν are positive, user-

efined weights. In addition, c 1 , c 2 , and H ( �) are defined as fol-

ows: 

 1 = 

∫ 
I(x, y ) H(�) d xd y ∫ 

H(�) d xd y 
, c 2 = 

∫ 
I(x, y ) ( 1 − H(�) ) d xd y ∫ 

( 1 − H(�) ) d xd y 
, and 

(�) = 

{
1 � ≥ 0 

0 Otherwise 
(6) 

here I ( x, y ) is the pixel intensity and � is the level set function. If

e regularize H ( x, y ) and δ( x, y ) using suitable smooth functions,

uch as H ε( ·) and δε( ·), (5) can be minimized using a calculus of

ariations [30] . The resulting Euler-Lagrange equation is given as

ollows: 

∂�

∂t 
= δε (�) 

[
μ · div 

( ∇�

|∇�| 
)

− ν − λ1 (I − c 1 ) 
2 + λ2 (I − c 2 ) 

2 

]
. 

(7) 

hen, the contour is deformed to the desired boundary using

epetitive iterations of (7) until the energy reaches its local min-

mum point, or its iteration number ( L ) does not exceed the pre-

efined maximum iteration number ( L max ). The CV algorithm has

any advantages, such as the ability to perform topology variation

f the contour automatically and to stabilize global region infor-

ation responses to local variations such as weak edges and noise.

owever, the performance of the level set method is limited due to

he computational cost of embedding the contour in higher dimen-

ional space. In particular, for object tracking, it is difficult to pre-

ict drastic shape changes of the object because the algorithm does

ot incorporate motion dynamics between frames into the tracking

rameworks. 

. Motivation behind the proposed method 

.1. SIS PF framework for vessel tracking 

The vessel tracking procedures based on the SIS PF are de-

cribed in Fig. 2 . The framework requires only one user interac-
ion on the slice where vessel tracking begins. In the initializa-

ion step , the particles and their weights are initialized using the

eed. In the proposed framework, the user needs to roughly select

 region around the vessel on the first slice. Then, the particles are

nitialized based on the contour obtained by exploiting the CV al-

orithm, and the particle weights are set uniformly. In the predic-

ion step , each particle (contour) moves toward the vessel bound-

ry on the consecutive slice based on the dynamics in (4) . In the

pdate step , the particle weights are updated by (2) based on the

articles predicted for that slice. In the proposed method, the CV

lgorithm is used to predict the particle changes on the slice. By

ombining the updated weights and predicted particles, a particle

ith the maximum a posterior (MAP) probability is selected in the

article selection step . These prediction, update, and particle se-

ection steps are repeated for the following consecutive slices to

rack along the vessel until vessel tracking terminates. 

With the SIS PF framework, the vessel is tracked along the slices

nd the optimal vessel segment (particle) on each slice is selected.

his helps avoid vessel segmentation failures due to an incorrectly

redicted seed, drastic changes in vessel location between con-

ecutive slices, or image noise inherent in medical imaging de-

ices. However, the general SIS PF framework has some drawbacks

hat limit its direct application to vessel tracking. In the follow-

ng sections, we show the effectiveness of the proposed method

ompared to conventional SNT methods, which are similar to the

roposed approach. In addition, the drawbacks of the general SIS

F framework and why framework localization is required for ves-

el tracking are explained relative to the importance function and

eighting policy of the PF. 

.2. Effectiveness of the proposed method 

Conventional SNT methods that are similar to the proposed

ethod have been proposed [31,32] . In [31] , the authors proposed

 cerebral artery tracking method based on an SIS PF , which is

nalogous to the proposed method. However, the artery segment

as represented by employing an ellipse model in terms of cen-

er position, normal vector, and major and minor axes. When the

essel on the plane is ellipse-shaped ( Fig. 3 (a)), it can be seg-

ented almost successfully. However, if the shape differs signifi-

antly from that of an ellipse ( Fig. 3 (b)), it is difficult to model

he appearance appropriately using an ellipse model; thus, track-

ng fails. In the proposed method, the segment is represented by

ts contour rather than a particular shape prior. Therefore, if the

hape changes drastically, the proposed method demonstrates bet-

er segmentation performance than the previously proposed con-

entional method [31] . 

The proposed SNT approach is also similar to the method pro-

osed in [32] . However, rather than the PF and level set method,

hat method employed a Kalman filter and the snake method to

rack and segment the vessel boundary, respectively. The Kalman

lter uses a linear state-space model for tracking. However, as

entioned in Section 1 , generally, simple linearity assumption is

ot suitable due to the intrinsic non-linear shape of the vessel.

hrough rigorous simulation, we found that the snake-based seg-

entation method has a parameterization problem and does not

ontrol the topology effectively. In contrast, the proposed scheme

an be used to segment and track the vessel boundary effectively. 

.3. Localization of importance function 

In the SIS PF framework in Fig. 2 , for each slice, the particle

eights are updated using the moved particles in the prediction

tep . Based on these weights, the particle having the maximum

osterior probability is selected as the vessel segment on that slice.

o approximate the posterior density, the state samples are drawn
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Fig. 2. SIS PF framework comprises four steps: initialization, prediction, update, and particle selection. 

Fig. 3. (a) Shape of the object is highly correlated with the predefined shape 

model such that the object can be segmented successfully using an ellipse model 

[31] . (b) In contrast, if the correlation is low, it is difficult to appropriately segment 

the object using the model. 
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according to their importance density q ( X t | X (i ) 
t−1 

, Z t ) in (3) . There-

fore, the selection of q ( ·) significantly affects tracking accuracy. In

most cases, q ( ·) relies on the current observation. However, obtain-

ing an analytical expression is difficult; thus, for the bootstrap fil-

ter method, it is preferable to use the prior information p( X t | X t−1 )

for the importance density. Usually, this prior is learned from a

training dataset that is obtained by the manual segmentation of a

vessel. However, this is a tedious processand requires input from

domain experts such as a radiologist . In addition, sampling from

this distribution is not robust when faced with an abrupt change

in the object. 

For example, consider a vessel contour object tracking prob-

lem, such as that shown in Fig. 4 . This problem can be decom-

posed into 1) translating the segmentation result of the previous

slice ( C t−1 ) and 2) segmenting the object of the current slice us-

ing the curve deformation algorithm. In this case, the translated

contour shown in Fig. 4 (b) can be represented as ˆ C t = C t−1 + D t 

where D t is a translation vector. The curve deformation process can

be performed by L t iterations of the energy minimization proce-

dure, starting from the initial contour ˆ C t , as shown in Fig. 4 (c). The

translation vector D t = 

[
d x t , d 

y 
t 

]
is sampled from its prior distribu-

tion p ( D ) as D t ∼ p ( D ), and the pdf of the prior can be obtained by

manual segmentation of the training data, as shown in Fig. 4 (d). In

other words, in the bootstrap filtering procedure, the state vector

X t = C t is predicted from the importance density p( C t | C t−1 ) = p(D )

and updated using the curve deformation procedure. 

However, if the translation estimation procedure is performed

using only p ( D ), the location of the initial contour may be pre-
icted inappropriately, i.e., ˆ C (1) 
t , as shown in 5 (a). In this case,

s shown in Fig. 5 (b), the segmentation result will be inaccurate,

.e., C t 
(1) , and this incorrect location of the initial contour results

n a large iteration number L t 
(1) for object segmentation . On the

ther hand, if the observed information , such as the pixel inten-

ity of the target object, is incorporated into the importance den-

ity, the location of the initial contour will be determined more

ccurately , i.e., ˆ C (2) 
t , as shown in Fig. 5 (c). Consequently, as shown

n Fig. 5 (d), fewer iterations L t 
(2) are expected to produce a more

recise segmentation result, i.e., C t 
(2) , compared to C t 

(1) . Therefore,

n the proposed framework, the observed information Z t is used

or calculating the importance density to achieve both an accurate

NT result and reduced computational load. 

.4. Stringent weighting policy 

One of the most serious problems facing the SIS PF frame-

ork is that, as it progresses, only a few particles tend to have

ignificant weights; thus the remaining particles have relatively

mall weights. Increasing variance of weights is called degener-

cy . This degeneracy implies that a large computational effort is

evoted to updating particles whose contribution to the approx-

mation of the posterior density function is essentially zero. In

ther words, degeneracy increases useless computations in the up-

ate step and acts like decreasing the number of particles used as

andidates of the vessel segment in the particle selection step ,

hich degrades tracking accuracy. Generally, the degeneracy prob-

em is dealt with by resampling , i.e., replacing samples according

o importance weights ( ω 

(i ) 
t ) and renewing the weight equally as

/ N s [33] . However, excessive frequent resampling causes a parti-

le with a large weight to be drawn multiple times, whereas par-

icles with small weights are abandoned. This phenomenon of de-

reasing the variance of particles leads to the so-called sample im-

overishment problem. 

Fig. 6 shows an example of a one-dimensional (1D) state vec-

or, which illustrates the degeneracy and sample impoverishment

roblems. In this example, the PF framework approximates the

osterior density ( Fig. 6 (a)) with a finite number of particles and

heir weights. In Fig. 6 (b), circles of the same radius are distributed

n the 1D line. The location of the circle’s center represents each
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Fig. 4. Motivation behind the proposed method. The SNT problem is decomposed into translation estimation and curve evolution. The amount of translation can be estimated 

by drawing samples from the displacement vector’s pdf. 

Fig. 5. Motivation behind the proposed method. (a) The prior contour ˆ C (1) 
t is ob- 

tained using only the prior distribution p ( D ). (b) After L t 
(1) energy minimization it- 

erations, the curve is evolved from 

ˆ C (1) 
t to C t 

(1) . (c) Then, the observed information 

is utilized to estimate the prior contour ˆ C (2) 
t as well as p ( D ). (d) After L t 

(2) energy 

minimization iterations, the curve is evolved from 

ˆ C (2) 
t to C t 

(2) . The segmentation 

result C t 
(2) is more accurate than C t 

(1) , however L t 
(2) < L t 

(1) . 

Fig. 6. One-dimensional (1D) state example of the importance sampling problem. 

(a) Posterior density, (b) initial estimates of posterior density , (c) degeneracy, (d) 

sample impoverishment problems, (e) appropriate scattering of particles, and (f) 

proposed posterior estimation by stringent weighting policy. 
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M

stimated 1D particle at the initial stage, while its radius describes

he magnitude of the weight. In Fig. 6 (c), the degeneracy prob-

em is observed as few particles having a predominantly large ra-

ius. The sample impoverishment problem due to repetitive resam-

ling is represented as circles that overlap at each specific region

 Fig. 6 (d)). These are the inherent problems of importance sam-

ling in the PF framework. To resolve them, in the proposed frame-

ork, the importance function is localized appropriately with a

imited number of particles, as shown in Fig. 6 (e). In addition, a

tringent weighting policy is applied to prevent specific particles

rom having large weights ( Fig. 6 (f)). 

. Proposed vessel SNT 

.1. System model 

Let C t be the contour for slice number t , which is represented

s the zero level set of a signed distance function �t ( x, y ), i.e., C t =
(x, y ) ∈ 	 

2 : φt (x, y ) = 0 
}

. Let D t = 

[
d x t , d 

y 
t 

]T 
be a two-dimensional
isplacement vector representing the translation of the centroid of

he contour with regard to the x - and y -axes [3] . The state vector

 t is defined using D t and C t , i.e., X t = [ C t , D t ] , and the observation

ector Z t is defined using the image of the tth slice ( I t ) and its CV

teration number ( L t ), i.e., Z t = [ I t , L t ] 
T . The overall system model is

ummarized in Fig. 7 . 

The problem of tracking a deforming vessel segment can be

eparated into two parts; 1) tracking the global rigid motion of

he object and 2) tracking local deformation in the shape of the

bject, which can be defined as any departure from rigidity (non-

ffine deformation). The major advantage of this method is that

oth local deformation and global motion of the contour can be

easured effectively in spatial and temporal domains. Thereby, the

bject contour can be tracked while adapting to various shape dy-

amics including topology changes. New samples are generated by

 resampling step similar to that in the general SIS PF process. 

.2. Prediction step 

In the proposed SNT, a coarse contour transition is first per-

ormed , and then, the contour is evolved at a finer scale, starting

rom the coarse scale contour. 

.2.1. Coarse scale transition 

The contour transition of each particle is modeled by the dis-

lacement vector, D 

(i ) 
t and can be written as follows: 

 

(i ) 
t ∼ N( ̄D t , �D ) where D̄ t = 

[
d̄ x t 

d̄ y t 

]
, and �D = 

[
σ 2 

x 0 

0 σ 2 
y 

]
(8)

here �D can be learned from the test dataset and D̄ t is predicted

y the following proposed block-based translation estimation algo-

ithm for each slice. 

In block-based estimation, a block is defined to determine

he amount of translation from the previous slice to the cur-

ent slice. As shown in Fig. 8 (a), a minimal block B̄ t−1 contain-

ng C̄ t−1 is found in the previous slice. Then, block B̄ t−1 is pa-

ameterized in terms of the center position, width, and height as
¯
 t−1 = 

[
x b 

t−1 
, y b 

t−1 
, w 

b 
t−1 

, h b 
t−1 

]
, in which the first two elements rep-

esent the center position and the third and fourth elements are

he width and height, respectively. Once B̄ t−1 is determined, block
ˆ 
 t is estimated to track the target object in the current slice us-

ng a block-based search algorithm. As shown in Fig. 8 (b), for the

urrent slice, a block ( ̃  B t ) of the same size as that of B̄ t−1 is gen-

rated and shifted pixel-by-pixel over the search window. For each

osition, the mean absolute error (MAE), which is the mean differ-

nce in pixel intensity between the previous and current blocks is

alculated as follows: 

AE (n, m, B t−1 , t) 

= 

1 

h 

b 
t−1 

· w 

b 
t−1 

w 

b 
t−1 ∑ 

v =0 

h b t−1 ∑ 

u =0 

∣∣I t−1 (x b t−1 + u, y b t−1 + v ) 
−I t (x b t−1 + u + n, y b t−1 + v + m ) 

∣∣. (9) 
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Fig. 7. System model: the state and observation vectors are defined as X t = [ C t , D t ] and Z t = [ I t , L t ] 
T 
, respectively. Displacement is defined using the difference between two 

centroids. 

Fig. 8. Coarse-to-fine approach of SNT. (a) Minimum bounding block B̄ t−1 at the 

previous frame, (b) one candidate for minimum bounding block ˜ B t at the current 

frame, (c) optimal minimum bounding block ˆ B t for the current frame, and (d) initial 

contour of the i th particle ˆ C (i ) 
t . 
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The optimal displacement vector ˆ D t can be found at the position

of the minimum MAE as follows: 

ˆ D t = 

[ 
ˆ d x t , 

ˆ d y t 

] 
= 

[
ˆ n , ˆ m 

]T 

= arg min 

(n,m ) 
MAE ( n, m, B t−1 , t ) . 

(10)

Then, for the i th particle, the contours are translated by ˆ D 

(i ) 
t =[

ˆ n (i ) , ˆ m 

(i ) 
]

as follows: 

ˆ 
 

(i ) 
t (x, y ) = C (i ) 

t−1 
(x − ˆ n 

(i ) , y − ˆ m 

(i ) ) . (11)

Fig. 8 (c) shows the optimal displacement ( ̂  D t ) as a result of the

MAE procedure. The translated contour ( ̂  C (i ) 
t ) is depicted by the

dotted line in Fig. 8 (d). 

4.2.2. Fine deformation 

After the coarse prediction is complete, a fine prediction is per-

formed to evolve each curve ˆ C (i ) 
t by the CV algorithm until the

contour reaches the energy saturation state. This means [ C t , L t ] =
f CE ( ̂  C t , I t ) , where f CE is the curve evolution function and L t is the

iteration number. During the iteration process, the curve evolution

is terminated if the energy value in (5) is less than the predefined

value E th , or if the iteration number L t reaches the predefined limit

L max . In this case, if the coarse scale estimation successfully locates

the initial contour of the CV method, a small number of L t will be

required to conduct segmentation, and vice versa. 

For example, Fig. 9 (a) and (b) show the prior estimates and

their segmented results for poorly and successfully determined lo-

cations of the initial contour, respectively. In addition, Fig. 9 (c)

represents the progress of the energy values with regard to an iter-

ation number for each case. When the coarse scale estimation lo-

cates the initial contour ( ̂  C (1) 
t ) poorly, its segmentation result ( C (1) 

t )

will be inappropriate, and its iteration number will be L (1) 
t = L max 

because its energy value never falls below the predetermined value

E th during the curve deformation procedure. On the other hand, if

the initial contour is successfully located as ˆ C (2) 
, the segmentation
t 
rocess will be performed successfully as C (2) 
t despite its small it-

ration number L (2) 
t , relative to L (1) 

t . Therefore, if the importance

ensity is localized appropriately via a coarse estimation, the SNT

erformance will increase. At the same time, the computational

oad for the fine scale will decrease . 

.3. Update and particle selection steps 

In the update step, the likelihood associated with each particle

s used to determine its weight. The likelihood indicates the de-

ree of dissimilarity between the predicted and desired contours.

or example, if the curves are too far from the intended result, the

eight will have a small value, and vice versa. In this paper, we

efine a likelihood that depends on the combination of the region-

ased energy functional from the CV model in (5) and the itera-

ion numbers of the CV model ( L ). For each particle: 

p( Z t | X 

(i ) 
t ) ∝ p CV ( I t | C (i ) 

t ) · p IN 
(
L (i ) 

t 

)
(12)

here p CV ( ·) and p IN ( ·) represent the region-based and iteration

umber likelihoods, respectively. The region-based likelihood is de-

ermined from the evolved contour as follows: 

p CV ( I t | C t ) = exp 

(
−E CV ( �t , I t ) 

σ 2 
CV 

)
(13)

here σ 2 
CV is the parameter controlling how quickly the exponen-

ial function converges to zero, and E CV ( ·) is given in (5) . On the

ther hand, the iteration number likelihood is related to the CV

teration number obtained from the fine transition described in

ection 4.2.2 . Specifically, for the iteration number likelihood, if the

oarse estimation described in Section 4.2.1 is conducted success-

ully, the fine-scale estimation will require only a small iteration

umber. Conversely, particles with a small iteration number im-

ly successful prior estimation, i.e., a small iteration number in-

icates a “good particle .” This information can be incorporated into

he likelihood function p( Z t | X (i ) 
t ) to discriminate between particles,

nd the resulting iteration number likelihood is expressed as fol-

ows: 

p IN (L ) 
= = exp 

(
− L 

σ 2 
IN 

)
(14)

here σ 2 
IN 

also effects how the exponential diminishes. By in-

orporating (12) into (4) , particle weights are updated based on

he region-based and iteration number likelihoods. When particle

eights have been calculated, the particle with the MAP probabil-

ty is selected as the estimator for time step t as follows: 

¯
 t = arg max 

X (i ) 
t 

p 
(
X 

(i ) 
t | Z t 

)
� arg max 

X (i ) 
t 

N s ∑ 

n =1 

ω 

(n ) 
t δ

(
X 

(i ) 
t − X 

(n ) 
t 

)
. 

(15)

ith this supplementary likelihood, the importance of a particle

an be calculated more precisely, and the posterior density can be

pproximated more accurately. 
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Fig. 9. (a) Segmentation result when the initial contour ˆ C (1) 
t is poorly located, (b) segmentation result with the successful initial contour ˆ C (2) 

t , and (c) progress of energy 

values with regard to the iteration number for each case. 

Fig. 10. Initialization of the PF-CV SNT procedure: (a) initial seed region by user input, (b) initial level set function, (c) initial maximum a posterior (MAP) estimate of the 

contour, and (d) initial particles of the contour. 
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Table 1 

Confusion matrix. 

Ground truth (real vessel cross-section) 

1 0 

Segmentation result 

(estimated) 

1 True positive (TP) False positive (FP) 

0 False negative (FN) True negative (TN) 
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In summary, with the stringent weighting policy in the update

tep, particles located on the initial contours are more likely to be

raced successfully. This alleviates the concentration of weights on

pecific particles, resulting in suppression of degeneracy. This also

educes the number of times resampling is necessary , which al-

eviates the sample impoverishment problem. 

.4. Initialization step 

The initialization step is a crucial point in contour tracking be-

ause an incorrect initialization leads to poor SNT performance.

ere, the purpose of initialization is to obtain the initial MAP esti-

ate, particles, and weights. In the first slice, shown in Fig. 10 (a),

n initial MAP estimate of the contour ( ̄C 0 ) is obtained by the CV

ethod based on the initial seed region defined by the user. Then,

he region is converted to the initial level set function as shown in

ig. 10 (b). Finally, as shown in Fig. 10 (c), C̄ 0 is jittered to obtain N S 

articles and their weights as follows: 

 

X 

(n ) 
0 

= 

[
C (n ) 

0 
, 0 

]T 
, ω 

(n ) 
0 

= 

1 

N s 

} N s 

n =1 

where C (i ) 
0 

(x, y ) = C̄ 0 (x − d (i ) 
x, 0 

, y − d (i ) 
y, 0 

) and 

d x, (i ) 
0 

, d y, (i ) 
0 

]
∼ N ( 0 , �D ) . 

(16) 

n other words, the initial particles are created by translating the

nitial MAP estimate C̄ 0 with 

[
d x, (i ) 

0 
, d 

y, (i ) 
0 

]
for both axes. Some ex-

mple initial particles are shown in Fig. 10 (d). 

. Experiments 

We measured the SNT performance and compared it to the gen-

ral particle filter segmentation framework reported by Rathi et al

21] ., which is the most popular PF contour tracking algorithm. 

.1. Datasets 

The SNT performance was compared with the synthetic vessel

odel and real abdominal CTA images. The synthetic images were

dopted from those used in our previous work [32] . Note that the
ynthetic vessel model is explained in detail in the Appendix A.1 .

 total of 300 synthetic slices were generated and smoothed using

 Gaussian kernel ( σ = 1 . 0 ). To measure the performance of the

roposed and existing algorithms in a noisy environment, Gaussian

oises, ranging from 5 to 15 dB with a 5 dB offset, were added

o the synthetic slices. 

For real CTA images, 10 abdominal CTA datasets were obtained

rom Siemens or General Electric CT devices. In each dataset, the

mage dimensions of each CTA slice were 512 × 512 pixels. For

ach dataset, the slices were resampled with an isotropic voxel

esolution of 0.5 mm. From the resampled CTA images, seven

rteries around the stomach were selected to evaluate the SNT

erformance: common hepatic artery (CHA), splenic artery (SA), left

astroepiploic artery (LGeA), right gastroepiploic artery (RGeA), left

astric artery (LGA), right gastric artery (RGA), and gastroduodenal

rtery (GA). The ground truth pixels of these arteries on the slices

ere segmented manually by radiologists. 

.2. Performance evaluation 

.2.1. SNT Accuracy 

To quantify SNT quality, we used the corresponding standard

eceiver operating characteristic (ROC) curve and its area under the

urve (AUC) value [34] . The pixels were classified according to the

onfusion matrix [34] in Table 1 , and then the occurrence of each

ntry was counted. The count variables, i.e., the number of true

ositive (TP), false positive (FP), false negative (FN), and true negative

TN) pixels, are denoted N TP , N FP , N FN , and N TN , respectively. Then,

ased on the four count variables, true positive rate (TPR) and false
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Fig. 11. Threshold variation for receiver operating characteristic (ROC) analysis: (a) 

level set function with various thresholds ( T R ) and (b) thresholding over the ROC 

space. 
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positive rate (FPR) are determined as follows : 

TPR = 

N T P 

N T P + N F N 

and FPR = 

N F P 

N T N + N F P 

. (17)

To obtain the ROC curve, a threshold ( T R ) should be controlled.

As shown in Fig. 11 , once segmentation is performed, the thresh-

olding operation can be performed using the value of the level set

function φ( x, y ). Normally, a contour is extracted corresponding to

the zero-level set of φ( x, y ). However, if we set the contour to

(x, y ) = { (x, y ) | φ(x, y ) = T R } for T R < 0, the object will be under-

segmented, as shown in Fig. 11 (a). The N FP and FPR values de-

crease, which leads to a high threshold value relative to the ROC

space, as shown in Fig. 11 (b). In contrast, if T R > 0, the contour

over-segments the object. In this case, the N FN value decreases as

TPR increases. This results in a low threshold in the ROC space.

The ROC curve can be obtained by averaging the TPR and FPR pair

of all slices with regard to T R . 

5.2.2. Degeneracy and sample impoverishment 

Generally, the degree of degeneracy is measured by taking the

average of the effective sample size calculated as follows [33] . For

N T total slices: 

N e f f = 

1 

N T 

∑ N T 

t=1 
N e f f (i ) where N e f f (i ) = 

(∑ N s 

i =1 

(
ω 

(i ) 
t 

)2 
)−1 

. 

(18)

In other words, as the weight value diverges, the value of N e f f 

decreases and the degeneracy problem becomes more severe. In

this study, resampling was implemented using systematic resam-

pling [33] and was initiated when N eff( i ) was less than N s /2. Next,

to discover the level of particle divergence, sample impoverish-

ment was evaluated using the average of the standard deviation

of the state vectors as follows: 

̂ σ SI = 

∑ N T 

t=1 
σ SI 

t where σ SI 
t = 

√ 

1 

N s 

∑ N s 

i =1 

∥∥X 

(i ) 
t − X̄ t 

∥∥2 
and 

X̄ t = 

1 

N s 

∑ N s 

i =1 
X 

(i ) 
t . (19)
Fig. 12. Example SNT procedure with real computed tomography angiography (CTA) ima

to the web version of this article.) 
inally, the degree of degeneracy was evaluated again using the av-

rage of the resamplings ̂ γRS , i.e., the number of resamplings di-

ided by N T . 

. Results 

In this section, we present the results of our experiments using

he proposed method in terms of segmentation quality, tracking

uality, and computation time. We compare the performance of

NT with that of the general PF segmentation framework reported

y Rathi et al. [21] . 

In Fig. 12 , example images are shown to illustrate a specific SNT

rocedure. Note that the contour of the i th slice is indicated by a

otted ellipse in Fig. 12 (a). For the next (i + 1) th slice, the con-

our is initialized using the contour of the i th slice, as shown in

ig. 12 (a). Then, the contour is predicted using the proposed block-

ased translation estimation (solid ellipse in Fig. 12 (b)). The contour

s evolved using the CV method, as shown in Fig. 12 (c). Then, the

article weights are updated while maintaining higher prediction

nd segmentation accuracy. Finally, the segmentation result for the

urrent frame is determined using the updated weights. 

.1. Image denoising parameter for SNT 

Because CTA slices are often rather noisy, a Gaussian filter is

sed to reduce the influence of noise. To find an optimal standard

eviation value of the Gaussian filter ( σ G ), we measure the SNT

etrics relative to σ G . 

Fig. 13 shows the average values of sensitivity (SEN), speci-

city (SPC), and the number of successfully segmented slices N seg 

racked for the abdominal CTA slices. The detailed descriptions of

EN, SPC, and N seg are presented in the Appendix A.2 . For each

etric, the maximum value is σG = 2 . 0 . Therefore, σG = 2 . 0 is used

o denoise the CTA slices. 

.2. Optimal number of particles for SNT 

In the proposed SNT process, the number of particles ( N s ) be-

omes an important factor to determine computational time. In

ther words, as N s increases, SNT performance increases; however,

he computation time also increases because the PF operation is

omputationally expensive. Therefore, to find an optimal number

f particles for SNT, a simulation is performed where N s is changed

rom 25 to 200 with an offset of 25. 

Fig. 14 shows the average SEN, SPC, and N seg values for the

bdominal CTA slices. As N s increases, the processing time in-

reases exponentially and the three metrics also increase. However,

ll metrics are saturated near N s = 150 . In the case of N seg , after

 s = 150 , the value remains the same; however processing time

ncreases. Therefore, we use N s = 150 for the following simulations.
ges. (For interpretation of the references to color in the text, the reader is referred 
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Fig. 13. SNT performance metrics w.r.t σ G using N s = 150 particles. 
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Fig. 14. SNT performance metrics and computation time relative to N s . 

Table 2 

Average metrics for Simulation 1. 

Metric Method 5 db 10 db 15 db 

N seg Conventional 134.77 136.00 136.81 

Proposed 252.33 263.22 268.88 

Difference 117.56 127.22 132.07 

SEN Conventional 0.9677 0.9683 0.9684 

Proposed 0.9965 0.9972 0.9974 

Difference 0.0288 0.0289 0.029 

SPC Conventional 0.9753 0.9753 0.9754 

Proposed 0.9811 0.9819 0.9825 

Difference 0.0058 0.0066 0.0071 

Table 3 

N e f f , ̂
 σ SI , and ̂  γRS for Simulation 1. 

Metric Method 5 db 10 db 15 db 

N e f f Conventional 8.45 11.23 12.3 

Proposed 10.7 12.78 13.71 

Difference 2.25 1.55 1.41 ̂ σ SI Conventional 1.69 1.49 0.94 

Proposed 2.52 2.03 1.05 

Difference 0.83 0.54 0.11 ̂ γRS Conventional 214 116 83 

Proposed 136 72 47 

Difference 78 44 36 
.3. Synthetic model (Simulations 1 and 2) 

In Simulation 1 , we change L max from 2 to 10 to identify the SNT

erformance of the proposed method. Fig. 15 shows the perfor-

ance of the proposed and conventional models in terms of N seg ,

EN , and SPC . The average values of these metrics relative to L max 

re summarized in Table 2 . In addition, the ROC curves and their

orresponding AUC values are shown in Fig. 16 . Finally, the average

ffective sample size N e f f , standard deviation of state vectors ̂ σ SI ,

nd the resampling rate ( ̂  γRS ) are shown in Table 3 . 

In Simulation 2 , to show the SNT performance, particularly the

racking performance, a more difficult situation is considered; i.e.,

e use only odd-numbered slices . In this environment, the posi-

ion and shape of the vessel segment vary more significantly be-

ween slices than in Simulation 1 . The average results in terms of
Fig. 15. Performance comparison with noisy synthetic models ( ◦: conventional model; × : proposed model). 
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Fig. 16. ROC curves for each model with the noisy synthetic model. Values in the legend represent the area-under-the-curve (AUC) values of each model. ( ◦: conventional 

model; × : proposed model). 

Table 4 

Average metrics for Simulation 2. 

Metric Method 5 db 10 db 15 db 

N seg Conventional 27.51 29.37 29.59 

Proposed 132.55 164.33 169.89 

Difference 105.04 134.96 140.3 

SEN Conventional 0.9621 0.9625 0.9632 

Proposed 0.9843 0.9855 0.9857 

Difference 0.0222 0.023 0.0225 

SPC Conventional 0.9734 0.9735 0.9736 

Proposed 0.9789 0.9769 0.9769 

Difference 0.0055 0.0034 0.0033 

Table 5 

N e f f , ̂
 σ SI , and ̂  γRS for Simulation 2. 

Metric Method 5 db 10 db 15 db 

N e f f Conventional 6.5 9.72 10.61 

Proposed 8.84 11.16 12.55 

Difference 2.34 1.44 1.94 ̂ σ SI Conventional 1.78 1.71 1.29 

Proposed 3.01 2.65 1.64 

Difference 1.23 0.94 0.35 ̂ γRS Conventional 255 174 136 

Proposed 207 112 47 

Difference 48 62 61 
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N seg , SEN , and SPC are summarized in Table 4 . We summarize N e f f ,̂ σ SI , and 

̂ γRS values to noise levels in Table 5 . 

6.4. Abdominal CTA slices (Simulations 3 and 4) 

In Simulation 3 , we apply the proposed and conventional mod-

els to the abdominal CTA slices to track the vessels for verifying

the diagnostic uses of the proposed method. Fig. 17 shows the per-

formance of the proposed model compared to Rathi’s model. The

average values for each performance metric for those vessels are

listed in Table 6 . Fig. 18 shows the ROC curves and their corre-

sponding AUC values. We summarize the values of N e f f , 
̂ σ SI , and̂ γRS in Table 7 . 

In Simulation 4 , to demonstrate the SNT performance in a more

difficult situation, we skip even slices of the abdominal CTA slices

in the same manner as that in Simulation 2 . The average values

of the three performance metrics are summarized in Table 8 . In

addition, we summarize the values of N e f f , ̂
 σ SI , and ̂

 γRS in Table 9 .

7. Discussion 

For the synthesis models , as can be seen in Simulations 1 and 2 ,

in general, N seg , SEN , and SPC of the proposed method are greater

than those of the conventional method for all noise levels. For a

severe environment in Simulation 2 , the overall values for the two
odels are lower relative to that in Simulation 1 , and the differ-

nce between the models is greater. This occurs because we em-

loy coarse scale estimation in the transition model and iteration

umber likelihood in the update model. 

In addition, each metric converges at L max ; however the pro-

osed method becomes saturated earlier for all metrics. On av-

rage, the proposed algorithm outperforms the existing model. In

articular, for a limited number of iterations, the performance dif-

erence between the two models increases. Conversely, on average,

o satisfy a certain level of SNT quality, the required iteration num-

er for the proposed algorithm is less than that required for the

onventional model. This results in a reduction in execution time

or the proposed method and demonstrates the time efficiency of

NT using the proposed model. The ROC curves in Simulation1 can-

ot be distinguished easily at a low noise level; however their AUC

alues show that the proposed method can provide better SNT per-

ormance than the existing model. 

As can be seen in Tables 3 and 5 , as the noise level increases,

 e f f decreases, and 

̂ σ SI and 

̂ γRS increase. However, compared

o the conventional model, the proposed method always shows

igher N e f f , lower ̂ σ SI , and lower ̂ γRS . Therefore, it can be con-

luded that the proposed method has lower degeneracy and sam-

le impoverishment, which shows a more robust SNT characteristic

han the existing method. 

For the abdominal CTA slices as seen in Simulations 3 and

 , the N seg , SEN , and SPC values obtained with the conventional

ethod are less than those obtained with the proposed model for

he seven vessels. Specifically, with the proposed algorithm, there

re no significant changes in the values of each metric with regard

o L max . However, for the existing method, the metric values be-

ome saturated in the L max function. In addition, the performance

ifference gradually increases as the value L max is reduced. 

As summarized in Tables 6 and 8 , the overall performance of

he proposed model is better than that of the existing model. For

xample, the difference in N seg is greater for LGeA , RGeA , LGA , and

GA than for CHA, SA, and GA in Simulation 3 because the former

roup of vessels is curved and has more branches than the latter

roup . In other words, this shows the superiority of the proposed

ethod when the object has difficult characteristics. Moreover, the

roposed method is also superior when the diameter of the vessel

s small or when the vessel has many small branches. 

The ROC curves of the proposed model in Simulation 3 are

lightly higher than those of the conventional model , and their

UC values are higher than those obtained with the conventional

odel. Therefore, it can be concluded that the overall performance

f the proposed method is better than that of the existing model. 

Generally, the proposed method produces a higher value for

 e f f and ̂

 σ SI but a lower value for ̂  γRS , with the difference between

he two methods being greater for the hard cases (LGeA, RGeA,
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Fig. 17. Performance comparison with abdominal CTA slices ( ◦: conventional model; × : proposed model). 

Table 6 

Average metrics for Simulation 3. 

Metric Method CHA SA LGeA RGeA LGA RGA GA 

N seg Conventional 0.6083 0.6122 0.5959 0.5041 0.5897 0.4859 0.5847 

Proposed 0.8892 0.8881 0.9316 0.8159 0.9632 0.8515 0.9299 

Difference 0.2809 0.2759 0.3357 0.3118 0.3735 0.3656 0.3452 

SEN Conventional 0.8678 0.7711 0.5642 0.5691 0.5320 0.5283 0.7465 

Proposed 0.9177 0.9209 0.8119 0.7823 0.8295 0.8072 0.9369 

Difference 0.0499 0.1498 0.2477 0.2132 0.2975 0.2789 0.1904 

SPC Conventional 0.9899 0.9882 0.9849 0.9766 0.9845 0.9761 0.9848 

Proposed 0.9954 0.9968 0.9971 0.9936 0.9979 0.9936 0.9946 

Difference 0.0055 0.0086 0.0122 0.0170 0.0134 0.0175 0.0098 

Table 7 

N e f f , ̂
 σ SI , and ̂  γRS for Simulation 3. 

Metric Method CHA SA LGeA RGeA LGA RGA GA 

N e f f Conventional 11.41 11.07 10.45 10.53 10.81 11.01 10.52 

Proposed 12.35 12.59 12.07 11.99 12.26 12.36 12.39 

Difference 0.94 1.12 1.62 1.46 1.45 1.35 1.27 ̂ σ SI Conventional 2.19 2.37 2.64 2.43 2.53 2.61 2.41 

Proposed 2.99 3.09 4.00 4.17 3.91 4.15 3.44 

Difference 0.8 0.72 1.36 1.74 1.38 1.54 1.03 ̂ γRS Conventional 115 112 130 126 129 124 120 

Proposed 88 80 91 90 90 88 91 

Difference 27 32 39 36 39 26 29 
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Fig. 18. ROC curves for each model with the abdominal CTA images. The values in the legend represent the AUC values of each model ( ◦: conventional model; × : proposed 

model). 

Table 8 

Average metrics for Simulation 4. 

Metric Method CHA SA LGeA RGeA LGA RGA GA 

N seg Conventional 0.5821 0.6096 0.3755 0.4943 0.2955 0.2681 0.3952 

Proposed 0.8804 0.8806 0.8825 0.8747 0.9432 0.8103 0.8706 

Difference 0.2983 0.271 0.507 0.3804 0.6477 0.5422 0.4754 

SEN Conventional 0.8436 0.7427 0.5306 0.6382 0.4981 0.5984 0.7247 

Proposed 0.9128 0.9180 0.8092 0.8716 0.8289 0.8966 0.9334 

Difference 0.0692 0.1753 0.2786 0.2334 0.3308 0.2982 0.2087 

SPC Conventional 0.9942 0.9930 0.9869 0.9850 0.9855 0.9846 0.9873 

Proposed 0.9960 0.9975 0.9958 0.9931 0.9960 0.9933 0.9920 

Difference 0.0018 0.0045 0.0089 0.0081 0.0105 0.0087 0.0047 

Table 9 

N e f f , ̂
 σ SI , and ̂  γRS for Simulation 4. 

Metric Method CHA SA LGeA RGeA LGA RGA GA 

N e f f Conventional 8.4 8.51 6.54 7.09 6.38 6.68 7.22 

Proposed 10.5 9.97 9.19 9.53 9.32 9.24 9.57 

Difference 2.1 1.46 2.65 2.44 2.94 2.56 2.35 ̂ σ SI Conventional 3.54 3.63 4.53 4.35 4.33 4.31 3.74 

Proposed 4.56 4.48 6.4 5.99 5.85 6.04 5.13 

Difference 1.02 0.85 1.87 1.54 1.52 1.73 1.39 ̂ γRS Conventional 197 196 231 219 218 210 207 

Proposed 145 148 170 157 156 144 153 

Difference 52 48 61 62 62 66 54 
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LGA, and RGA) than for the other cases. Therefore, the proposed

method exhibits lower degeneracy and sample impoverishment,

thereby indicating more robust SNT characteristics than the con-

ventional method with real CTA images. In addition, the N e f f , 
̂ σ SI ,

and 

̂ γRS values listed in Table 9 exhibit similar results to those of

Simulation 3 . Therefore, we can conclude that the proposed method

incurs lower degeneracy and sample impoverishment. 

A limitation of the proposed method is the manual selection of

the number of particles ( N s ). The number N s is a very important

factor since the computational time is linearly increased in propor-

tion to N s . In our case, the optimal N s is chosen experimentally

as described in Section 6.2 . Nevertheless, the automatic selection

of the optimal parameters is still a difficult issue in-state-of-art

SNT methods [35,36] . Another limitation of the proposed method
s the fact that the framework is semi-automatic. In other words, a

ough region around the vessel boundary on the first slice where

racking begins is required to track the vessel via the proposed

ramework. In recent years, several methods have been proposed

o segment and track the vessel fully automatically [37,38] . How-

ver, these methods are data-driven or specialized into particular

essels to be automatic, which makes the algorithms somewhat

ata-dependent. 

In further work, the proposed method will be largely acceler-

ted by a parallel implementation since segmentation (each par-

icle) can be performed independently. In addition, we plan to

pdate the proposed framework fully automatically by combin-

ng with a machine learning framework. In this case, we intend

o resolve data-dependency by cross-domain adaptation methods
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Fig. 19. Determination of the bounding block for ROC analysis. The width and height of the bounding block are increased as ˆ w = w · ˆ α and ̂  h = h · ˆ α, where ˆ α is determined 

using the predefined prevalence ( ̂ π ). 
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39,40] which enable the classifiers to be modified to be suitable

o each dataset without re-training. 

. Conclusion 

In this paper, we proposed an enhanced particle-filtering

ramework for vessel SNT. The arbitrarily shaped blood vessel

oundary was segmented on each slice using the level set method,

hile a PF was used to track the translation and shape deformation

etween CTA slices. To enhance SNT accuracy and reduce computa-

ional load, an importance function was localized by incorporating

dditional observed information into the process dynamics. More-

ver, to reduce the impact of degeneracy and sample impoverish-

ent, a stringent weighting policy that utilizes the accuracy infor-

ation of the prior estimation was proposed. This allows the vari-

nce of the weights to be maintained properly while reducing the

umber of resamplings. Experiments were performed with syn-

hetic and in vivo abdominal CTA images. To evaluate performance,

EN and SPC were calculated. Based on such statistical measures,

he number of successfully segmented slices N seg , ROC curves, and

he corresponding AUC values were obtained. A performance com-

arison showed that the proposed framework exhibits better SNT

erformance than the existing model. In particular, for a limited

teration number, the performance difference between the two al-

orithms increased. In addition, we found that, in terms of the

verage effective sample size, the standard deviation of the state

ectors, and the resampling rate, the proposed method tended to-

ard lower degeneracy and sample impoverishment compared to

he existing method. 
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ppendix A 

.1. Synthetic vessel model 

The synthetic vessel model of a three-dimensional spiral was

ormularized as: 

• Central position ( x, y, t ) of skeletal structure 
• for 0 < θ < 3 π

x = 

(
40 z 
150 + 40 

)
cos θ, y = 

(
40 z 
150 + 40 

)
sin θ, t = 

300 θ
6 π

• Cross-sectional geometry 
• for 0 ≤ θ < 6 π , 

circle of radius( r ), r = 3 . 2 
(
1 + 

θ
2 π

)
• for 3 π ≤ θ ≤ 6 π

gradually elongate the ellipse with semimajor ( a ) and

semiminor ( b ) axes 
( θ−3 π) 
where a = 8 and b = 10 + π . 
A total of 300 synthesis slices were generated along the tem-

oral direction of the synthesis model for each time t from 10 to

09. 

.2. Measurement metrics for ROC analysis 

To calculate the TPR and FPR, a bounding block including the

round truth and the segmentation result was created, as shown

n Fig. 19 . The TPR and FPR are affected by the size of the bound-

ng block, i.e., these metrics are uncalibrated measures [41] . These

easures can be calibrated if the prevalence ( π ) is fixed for each

lice. Therefore, to calibrate the measures for each slice, we define

 minimum bounding block in Fig. 19 and determine the width and

eight of the bounding block as follows: 

= 

N T P + N F N 

w · h 

, ˆ w = w · ˆ α and 

ˆ h = h · ˆ α with ˆ α = 

√ 

N T P + N F N 

ˆ π

(20) 

here w, h , and ˆ π are the width and height of the bounding block

nd the predefined prevalence, respectively. In other words, when

he width and height of the bounding block are increased from ( w,

 ) to ( ̂  w , ̂  h ) , the prevalence of the bounding block is set to ˆ π . 

Moreover, we measure the average SNT performance for the ze-

oth level of φ( x, y ) using TPR i and FPR i , which are the TPR and

PR of the i th slice, respectively. First, success or failure of the

egmentation of each slice can be determined by comparing the

PR i and FPR i values with the predefined threshold ( T eval ). In other

ords, if TPR i > T eval and FPR i < T eval , the segmentation of the i th

lice is considered successful. Otherwise, segmentation fails, and

he tracking procedure ends at that slice. Subsequently, the num-

er of successfully segmented slices, denoted N seg , is counted and

sed as the average performance index for tracking. In addition,

he average segmentation performance is obtained by calculating

he average sensitivity and specificity: 

EN = 

1 

N seg 

N seg ∑ 

i =1 

TPR i and SPC = 

1 

N seg 

N seg ∑ 

i =1 

(1 − FPR i ) . (21) 

For the i th slice, if the TPR and FPR values relative to T R in

ig. 11 are denoted as TPR 

T R 
i 

and FPR 

T R 
i 

, the ROC curve can be ob-

ained using the average TPR and FPR pair, which is calculated as

ollows: 

PR 

T R = 

1 

N seg 

N seg ∑ 

i =1 

TPR 

T R 
i 

and FPR 

T R = 

1 

N seg 

N seg ∑ 

i =1 

(1 − FPR 

T R 
i 
) . (22) 
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