
Engineering Applications of Artificial Intelligence 127 (2024) 107404

A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Double reverse diffusion for realistic garment reconstruction from images
Jeonghaeng Lee a, Duc Nguyen a, Jongyoo Kim b, Jiwoo Kang c, Sanghoon Lee a,∗

a Department of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, South Korea
b Microsoft Research Asia in Beijing, 100080, China
c Sookmyung Women’s University, Seoul 04310, South Korea

A R T I C L E I N F O

Keywords:
3D garment reconstruction
Deep learning
Mesh processing
Graph diffusion
Graph long short term memory
Double reverse diffusion

A B S T R A C T

Creating realistic digital 3D avatars has been getting more attention thanks to the introduction of new
multimedia formats such as augmented and virtual reality. An important factor making avatars realistic is
clothes. In this paper, we investigate a new method to reconstruct realistic garments from a set of images and
body information. Early methods working on realistic images struggle to faithfully reconstruct the garment
details. As deep learning is increasingly applied to geometric data which can conveniently represent garments,
we devise a novel deep learning-based solution to the garment reconstruction problem. We offer a new
perspective on the reconstruction problem and treat it as a reversion of the smoothing diffusion process.
To achieve this goal, we propose to deform the smoothed human mesh into a clothed human via a Double
Reverse Diffusion (DReD) process. For the first reverse diffusion, we introduce a novel operator called Graph
Long Short-Term Memory (GraphLSTM) which recursively diffuses features to produce a deformed mesh by
modeling the relationships between vertices. Then, the output mesh can be repeatedly upsampled and deformed
by the above pipeline to obtain finer garment details, which can be seen as another reverse diffusion process.
To obtain features for the reverse diffusion, we extract pixel-aligned features transferred from images and
explore to incorporate the visibility of garments from the image viewpoints. Through detailed experiments on
two public datasets, we demonstrate that DReD synthesizes more realistic wrinkled garments with lower errors
and offers faster inference than previous methods.
1. Introduction

In recent years, the world has been witnessing an increase in de-
mands for new media contents such as virtual, augmented, and mixed
reality. Much research has been dedicated to realize more realistic,
customized and personalized contents. Accordingly, there have been
intensive research for comprehensive 3D human modeling, encompass-
ing advancements in 3D facial reconstruction (Kang et al., 2021), pose
estimation (Lee et al., 2022), and avatar creation (Alldieck et al., 2019;
Bhatnagar et al., 2019; Peng et al., 2021). However, most early studies
focused on predicting joint positions or reconstructing only the naked
body model. An important factor to create a realistic avatar is garments.
For 3D human reconstruction, complex body deformations and figures
are widely modeled by parametric models. Garments introduce even
more complicated and diverse shapes and unpredictable deformations,
leading to a very challenging problem in avatar creation.

Garment reconstruction has been intensively studied recently. A
dominant approach is a physics-based simulation (PBS) (Patel et al.,
2020; Guan et al., 2012) in which a deep learning predictive model is
trained on simulated data to predict garment wrinkles based on body
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shape and pose. However, physics-based engines can only approximate
a limited range of materials and environments, and usually fail to model
the complex interactions between human body and garments. Needless
to say, these methods do not provide satisfaction in terms of realism. As
a workaround to avoid the need for physics simulators, other research
attempted to involve images. Typically, there are two lines of research.
On the one hand, many studies start with a well-engineered 3D human
model, for e.g., the SMPL model (Loper et al., 2015), which is driven
by shape and pose information, and then directly deform the human
model into the garment shape (Huang et al., 2020; Alldieck et al.,
2019). Although this approach is simple and yields realistic results, it is
difficult to model multiple clothing layers. On the other hand, garment
templates can be pre-constructed and depending on the human pose
and shape, they can be skinned and deformed to match the descriptions
from images, enabling multi-layer clothing modeling (Bhatnagar et al.,
2019; Jiang et al., 2020). However, templates should be created for
each specific garment type, and cannot generalize to unseen garments.
Moreover, human body and garment models can intertwine with each
other during draping and generate artifacts due to the difference in
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Fig. 1. The key concept that governs our method: Reconstruction can be seen as the
reversion of a smoothing diffusion process.

sizes and forms between templated and real garments. In this paper, we
aim to reconstruct garments with realistic wrinkles by leveraging natu-
ral images to deform an under-cloth human model directly, eliminating
the need for PBS data and garment templates.

Triangular meshes have been a de facto standard in the computer
graphics industry. It is the most common representation of humans and
garments, and yet very few methods natively processed the mesh as
a graph. To handle the uneven mesh topology, the works in Alldieck
et al. (2019) and Gundogdu et al. (2019) applied graph neural networks
(GNNs) (Kipf and Welling, 2017; Defferrard et al., 2016a). However,
training GNNs requires a careful strategy. Also, it is difficult to deepen
the network architecture as deep GNNs tend to map adjacent nodes
to nearly identical embeddings (Rong et al., 2020; Chen et al., 2020).
Paradoxically, shallow GNNs cannot model the interaction between
nodes with long geodesic distances. Therefore, we need to explore
a way to enable deeper networks and extract better representative
geometric features for garment reconstruction.

In this paper, we propose a novel 3D garment reconstruction frame-
work that can realistically produce 3D clothes depicted in a set of input
images. Our solution deforms mesh vertices into garments directly to
avoid using templates and for better generalization. To deform the
initial mesh into garments, we completely rethink the problem of
reconstruction from the graph diffusion point of view. Our concept is
illustrated in Fig. 1. We hypothesize that a fully-clothed human mesh
can be transformed into a smooth SMPL model (Loper et al., 2015) via a
smoothing process described by a heat diffusion equation. In this way,
the 3D garment reconstruction problem can be seen as a reversion of
this diffusion process. This reverse process fully considers the geom-
etry of human body, and the vertex deformation is conditioned on a
large neighborhood, which better ensures the feasibility of the solution
compared to previous works. Conceptually, our work is similar to the
popular Denoising Diffusion Probabilistic Model (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Dhariwal and Nichol, 2021) (DDPM), but our
work is deterministic and the training of our model is radically different
from that of DDPMs. Reversing the smoothing, however, is impossible
because this diffusion process is irreversible per the second law of
thermodynamics, not to mention that the smoothing process might be
more complicated than the heat diffusion. Nevertheless, it is possible
to leverage the sparse-view images to estimate the reverse process. An
overview of the proposed system is shown in Fig. 2. As can be seen, we
first extract pixel-aligned features from the images and then reverse
the smoothing process gradually. Technically, any existing graph con-
volutional (GC) operator can be used for the reversion. To better learn
the deformation, it is necessary to condition on a wide surface area,
which requires many diffusion steps to model the relationship between
geodesically distant vertices. Because it is difficult to do so with simple
GCNs (Rong et al., 2020; Chen et al., 2020), we propose a new GC
operator termed Graph Long Short-term Memory (GraphLSTM), which
is a novel adaptation of the standard LSTM (Hochreiter and Schmidhu-
ber, 1997) for graph signals. GraphLSTM can resolve the oversmoothing
problem that most deep graph convolutional networks (GCNs) suffer by
integrating past information into the current diffusion step. To prolong
2

the diffusion chain without incurring much memory, we propose to use
GraphLSTM in a recursive manner by applying it 𝑇 times to the outputs
as depicted in Fig. 2.

To provide features for the reverse diffusion process, we use a
convolutional neural network (CNN) to obtain features from input
images at multiple scales. To this end, we extract vertex-specific and
pixel-aligned features, which can capture the silhouettes of garments, as
well as distilling edge information formed by wrinkles. In addition, we
also explicitly model the visibility of the 3D model in the input images
to indicate the reliability of the features extracted from each view.

It comes to our realization that the feature diffusion with
GraphLSTM is agnostic about mesh resolution, so it is possible to apply
it recursively to 𝑁 mesh resolutions as can be seen in Figs. 2 and 5.
Concretely, after obtaining a low-resolution output, we upsample the
mesh by adding vertices and interpolating the mesh signals, and then
reuse it again in the same reverse diffusion process as before, which can
be seen as another reverse diffusion. Thus, we term our method Double
Reverse Diffusion (DReD). Notably, GraphLSTM is shared across scales,
which is radically different from cascaded regression and progressive
learning (Karras et al., 2018). To the best of our knowledge, this work
is the first to formulate image reconstruction as a reverse diffusion
process, as well as in terms of adapting LSTM as a graph processing
operator.

Our contributions in this work can be summarized below:

• We introduce a novel framework termed ‘‘DReD’’ (Double Reverse
Diffusion) to reconstruct garments from multi-view images in
the subspace of the SMPL model. We regard an SMPL mesh
as an oversmoothed clothed human body and as a result of a
diffusion process, thereby proposing to reverse this process for
detailed 3D garment reconstruction. Viewing the reconstruction
as the reversion of the smoothing process can potentially unlock
a wider application of many other diffusion models into 3D
reconstruction.

• We design a novel graph operator called GraphLSTM which is an
LSTM adapted to graph signals.

• We present a comprehensive benchmark to show the effectiveness
of our solution to 3D garment reconstruction.

2. Related work

2.1. Garment modeling

There has been some research considering reconstruction of fully-
clothed human. In Alldieck et al. (2018b), given a realistic monocular
video, Alldieck et al. reconstructed 3D body models including full cloth-
ing effects, facial expressions, and hairstyles using the SMPL model.
After this pioneering work, many subsequent studies (Alldieck et al.,
2019; Huang et al., 2020; Habermann et al., 2020) followed the same
practice. These methods deformed the vertices of SMPL but did not
separate the clothes from the body. Also, they did not solely focus on
garments, so as a result, wrinkles are not reconstructed in detail.

In another line of research, garments are modeled separately using
templates, and these templates are deformed for every detected clothes
layer. In Lähner et al. (2018), Laehner et al. proposed a method that
combined a statistical model, which basically is a Principal Component
Analysis model similar to SMPL, and a generative network that takes
a temporal 3D scan sequence and deforms pre-defined templates into
clothes. Because of learning from real data, the output is realistic,
but the 4D sequence input is hard to come by in practice. Bhat-
nagar et al. (2019) introduced a network that predicts SMPL-based
garments from multi-view images. BCNet (Jiang et al., 2020) predicted
garment and body shapes only from a single-view image, and the
garment template was not SMPL. The method was trained and tested
on a synthetic dataset, which makes the output unrealistic. The works
in Pons-Moll et al. (2017) and Casado-Elvira et al. (2022) fitted SMPL-

based garments to monocular videos. As these methods are based on
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Fig. 2. A bird-eye view of our framework. Given several multi-view images of garments and a fitted SMPL model, we extract features for the SMPL mesh and send it to a
GraphLSTM module in which the mesh features are repeatedly diffuse to reverse the smoothing process. The deformed SMPL can be upsampled and recursively subjected to this
process to obtain the final high-resolution garments.
optimization, they are quite slow compared to learning methods. In-
spired by the neural radiance field (NeRF), in Saito et al. (2020), Huang
et al. (2020), Peng et al. (2021) and Xiu et al. (2022), the authors
reconstructed an implicit neural volume for humans conditioning on
SMPL priors. Qiu et al. (2023) optimized a signed distance function
field to model garments from monocular videos. These models can
easily produce incorrect shapes and induce artifacts in void space. Hong
et al. (2021) proposed to reconstruct garments from a point cloud
sequence, which highly restricts the wide applicability of the method.

Many methods resort to physics-based models (Guan et al., 2012;
Patel et al., 2020; Bertiche et al., 2021). DRAPE (Guan et al., 2012)
constructed a simulated dataset to animate clothing effects on the hu-
man body of various shapes and poses. In Patel et al. (2020), garments
are predicted based on human pose and shape and garment geometry
by a neural network (NN). Bertiche et al. (2021) proposed a solution
to garment animation according to human body data. Zou et al. (2023)
introduced a new large-scale PBS dataset containing diverse poses,
garments and motions. However, as mentioned earlier, the physics-
based simulated data do not look realistic. In addition, a predictive
model as a function of body information and garment type cannot
fully capture the sophisticated underlying physics that forms garment
wrinkles. Meanwhile, our method predicts garment deformations from
images, which is a workaround for the explicit modeling of the under-
lying body-garment interaction; hence, the problem is simpler and the
outputs are more realistic.

2.2. Generic Multi-view 3D reconstruction

Multi-view 3D reconstruction has been intensively studied in the
past. Structure-from-Motion (SfM) (Hartley and Zisserman, 2004) has
been the most well-known method in this category and since then, it
has been perfected in Schonberger and Frahm (2016). This algorithm
is critical for different problems such as dependence on matching
accuracy, computational complexity, and it takes much time for the
optimization. Deep learning has been shown to be very effective in
a wide range of tasks and thus, it has been constantly integrated
into 3D reconstruction (Fan et al., 2017; Nguyen et al., 2019; Wang
et al., 2020; Park et al., 2019). These methods usually focus on static
objects like tables and cars, which do not have a wide variety of
shapes, poses, and deformations like garments. In Bogo et al. (2016),
Bogo et al. reconstructed humans only considered up to shape and pose
information without fine deformation of skins and clothes. In Zheng
et al. (2019), Zheng et al. reconstructed the whole human mesh,
but did not consider garments specifically. Other works have tried to
recover different human-related properties (Kemelmacher-Shlizerman
and Basri, 2010; Feng et al., 2018).
3

Recently, there has been much noise created by NeRF, which started
by the work of Mildenhall et al. (2020) and followed by a considerable
amount of research (Zhang et al., 2020; Wang et al., 2021). From mul-
tiple images of a scene, NeRF learns an implicit function that maps 3D
locations to density and color, and a 3D mesh can be recovered using
marching cubes (Lorensen and Cline, 1987). These methods require
many views in order to succeed and they usually cannot generalize to
new scenes.

2.3. Graph diffusion

There have been several works investigating diffusion on graph. The
most similar research that considers diffusion as a graph operator is
perhaps Klicpera et al. (2019). In this study, the authors introduced a
new operator that computes a linear combination of different diffusion
steps. Our operator has the same spirit because an LSTM keeps track
of all the past hidden activations in a cell gate, but the aggregation
is non-linear. The work in Jiang et al. (2019) introduced a feature
diffusion module by using Laplacian regularization models. In a remote
study, Wang et al. (2017) used LSTMs to predict diffusion sequences.
Sharp et al. (2022) proposed a diffusion layer in spectral domain
for general graph processing purposes. We note that these works are
orthogonal to our study, and thus they can possibly be combined into
a better framework. Elsewhere, Liang et al. (2016) also employed LSTM
for graph signals, however, their operator predominantly uses a dot
product approach, neglecting the diffusion between graph nodes.

2.4. Denoising diffusion probabilistic models

In image generation area, DDPMs have set a new milestone in terms
of image quality recently. Since its inception (Sohl-Dickstein et al.,
2015), numerous studies have been introduced to make these models
work with high-resolution and complex images (Ho et al., 2020; Song
et al., 2021). These models work on the assumption that noise is added
to an image until no information is retained in the image. Thus, the
reverse process can be seen as generating image from noise. The main
difference between our work and DDPMs is that for DDPMs, an NN is
usually trained to reverse only one step of the diffusion process and
then runs recursively in the generation step. On the other hand, we use
LSTMs to reverse the whole process during training because of the lack
of intermediate supervision, and thus the entire reversion does not take
as much time as DDPMs.
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2.5. Recursive neural network

The idea of a modern recursive neural network can be dated back
to Socher et al. (2011) in which the authors used a single NN to predict
recursive structures. More recent methods have been proposed (Kim
et al., 2016; Guo et al., 2019) in order to increase networks’ depths
without using adding more trainable parameters. Different from ours,
these works were not placed in the context of diffusion, and they did not
employ recurrent networks. We employ recursive architecture in order
to simulate a diffusion chain and use an LSTM to control the recursion.

3. Proposed method

3.1. Overview

Our goal is to reconstruct the detailed 3D mesh of garments given
only sparse multi-view RGB images accompanied with human body
information in the form of a registered SMPL model. The overall frame-
work is presented in Fig. 2. First, we describe the mesh deformation
pipeline governed by the graph diffusion principle in Section 3.2. Next,
we explain how features can be extracted from images (Section 3.3) and
transferred to the SMPL mesh (Section 3.4) for the deformation process.
Finally, we demonstrate the recursion of the deformation process in
Section 3.5, which constitutes our full framework, DReD.

3.2. Mesh deformation via feature reverse diffusion

The motivation of our work stems from the smoothing process of a
surface. In this case, the change of the surface over time can be modeled
using a heat diffusion equation (Cannon, 1984)
𝜕
𝜕𝑡
𝑓 (𝑥, 𝑡) = 𝛥𝑓 (𝑥, 𝑡), (1)

here 𝑓 ∶ × →  is a function defined over garment surface, 𝛥 is a
aplace–Beltrami operator, and 𝑡 represents time. As triangle mesh can
e thought of as a discretization of a continuous surface, the diffusion
quation for a mesh at a vertex 𝑣 can be written as

𝑡+1(𝑣) = 𝑓𝑡(𝑣) + 𝛥𝑓𝑡(𝑣). (2)

hen 𝑓 is the coordinate of the vertex in 3D space, (2) is an iterative
aplacian smoothing process (Taubin, 1995). After a number of time
teps, we obtain a smoothed version of the original mesh. In this work,
e hypothesize that after this forward process, a fully clothed human
esh turns into a smooth SMPL body. Thus, given images of the mesh

efore being smoothed and a naked SMPL model fitted to the images,
e seek to reverse this smoothing diffusion to deform the SMPL mesh

nto the original fully clothed human that matches the description in
he images. Due to the difficulty in reversing this process in a closed-
orm solution, we try to leverage the sparse input images for the
eversion. In this paper, we explicitly model this reverse process step by
tep using a GraphLSTM, which is essentially an LSTM (Hochreiter and
chmidhuber, 1997) but works on graph signals. Instead of reversing
ach step in 3D directly, we propose to map the mesh into a high-
imensional space and perform the reversion in this feature space. It
s expected that the reverse step may be easier here because non-linear
elationships can be flattened in higher dimension.

A schematic view of our proposed GraphLSTM is demonstrated in
ig. 3. Similar to a typical LSTM, at every time step 𝑡, GraphLSTM
ontrols the memory using four gates: input 𝑖𝑡, forget 𝑟𝑡, cell 𝑐𝑡, and
utput 𝑜𝑡. To adapt an LSTM to graph signals, we propose to replace
everal dot products with geometrical GCs (Kipf and Welling, 2017) as
an be seen in Fig. 3. Specifically, we keep the dot product for the input
eatures but use GC for the hidden states. Instead of being a typical
4

Fig. 3. An overview of the internal structure of our proposed GraphLSTM. 𝜎 is a
sigmoid activation function.

sequence-to-sequence mapping, our GraphLSTM recursively processes
the features as
𝑖𝑡 = 𝜎(FC(𝑓𝑡) + GC(ℎ𝑡−1))

𝑟𝑡 = 𝜎(FC(𝑓𝑡) + GC(ℎ𝑡−1))

𝑜𝑡 = 𝜎(FC(𝑓𝑡) + GC(ℎ𝑡−1))

𝑔𝑡 = tanh(FC(𝑓𝑡) + GC(ℎ𝑡−1))

𝑐𝑡 = 𝑟𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡),

(3)

where FC is a fully connected (FC) layer, and GC is simply an FC layer
followed by a multiplication with the adjacency matrix, 𝜎 is the sigmoid
function, and ⊙ is the Hadamard product. 𝑓 is the extracted feature of
vertex 𝑣 and the detail is presented in Section 3.4, and ℎ−1 is zero. For
each recursion step, we supply a shortcut from the input via FC(𝑓 ).
After one time step, ℎ𝑡 and 𝑐𝑡 are passed to the next time step for the
recursion. Thanks to the control flow of LSTM, our model can attend to
different time steps of the diffusion in a non-linear fashion to capture
the long-range dependencies between geodesically far vertices, thus the
vertices can get better updates in each diffusion step.

The recursive solution can also be modeled by simply stacking
multiple GC layers. However, training deep GCN is hard (Rong et al.,
2020; Chen et al., 2020), and may require much memory. By using
a GraphLSTM in a recursive manner, we can not only control the
information flow at a node but also save up the memory footprint. On
the other hand, one might be tempted to use a single GC layer and
recurse multiple times, which is similar to Klicpera et al. (2019). This
defines a linear combination of different diffusion steps. In our case,
the diffusion is controlled by a GraphLSTM, which has a non-linear
cell state, so it can better model any non-linear relationship between
different time steps.

After the features are diffused over the mesh, we predict per-vertex
offsets using an FC layer without any non-linearity. However, GC is a
local operator and it has been shown in our previous work (Nguyen
et al., 2019) that it is necessary to model the relationship between all
vertices. Therefore, before the final layer, we max-pool the features
over all vertices and concatenate with the features for offset prediction.

In order to reverse the diffusion process with GraphLSTM and
predict vertex offsets, we need to extract features for the vertices of
the SMPL model from the input images. In the following sections, we
devise a novel strategy for feature extraction.

3.2.1. GraphLSTM and heat diffusion
We introduce GraphLSTM as an attempt to reverse the smoothing

process, which we assumed to be a simple isotropic heat diffusion
(or Laplacian smoothing in the discrete case) over the surface. Here,
we consider two aspects of the diffusion process. We first look at
how diffusion at a single time step is modeled by the GraphLSTM,
and then investigate how the diffusion behaves over a time period.
Considering an infinitesimal time interval, or a single time step in
the discrete case, because GraphLSTM employs GC (Kipf and Welling,
2017) which diffuses information symmetrically from a node to its
neighbors, GraphLSTM is a spatially isotropic diffusion operator. In that
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Fig. 4. Our feature extraction pipeline for one view. First, multi-scale 2D feature maps are extracted by using a VGG network (Simonyan and Zisserman, 2015). Then, the SMPL
mesh is back-projected onto the feature maps to obtain multi-scale feature vectors for each vertex. The per-vertex feature vectors are concatenated together with an indicator of
whether the vertex is visible in the image.
sense, GraphLSTM is able to simulate the heat equation correctly. On
the other hand, the diffusion process over a long time period simulated
by the recursion of GraphLSTM is not equivalent to the heat equation.
While heat diffusion is a memoryless process in which the output
of the current state depends only on the current state, GraphLSTM
output is heavily affected by previous states of the graph because of
the various gates inside an LSTM. In other words, the diffusion at a
node can be adjusted to be fast or slow at different times rather than
solely depending on the function surface, as can be seen in Fig. 7.
From that point of view, GraphLSTM can be regarded as a temporally
anisotropic diffusion operator. It is important as the true smoothing
process is likely to be more sophisticated than simple heat diffusion and
can involve non-linear processes. Therefore, a temporally non-linear
weighted average operator like GraphLSTM is necessary to model such
a sophisticated process.

3.3. Image features

We use an architecture similar to the popular VGG network (Si-
monyan and Zisserman, 2015), to extract features from input images
as shown in Fig. 4. The network consists of five blocks. The dimension
of the first block is 16, and the dimension of each block is twice of
that of the previous one. To reduce computation, we downsample the
feature maps by two in both height and width dimensions. In the same
spirit as VGG, all learnable filters have a size of 3 × 3.

3.4. SMPL mesh features

3.4.1. Per-vertex features
The extracted 2D features contain rich shape features, so it is desired

to transfer them to the fitted SMPL vertices (Loper et al., 2015). The
feature transfer pipeline for one view is illustrated in Fig. 4. We project
each vertex of the SMPL mesh onto the 2D image plane and calculate
the corresponding feature vector. Concretely, we query the nearest
corners to a projected point in the 2D grid and use bilinear interpolation
to resample the feature. Let  = ( , ) be the fitted SMPL mesh with
a set of triangular faces  and a set of vertices  . Also, let 𝐹 𝑏(⋅) be
the feature vector of a pixel at block 𝑏 from VGG-lite. The feature for
a vertex 𝑣 ∈  can be computed as

𝑓 𝑏
per-vertex(𝑣) = 𝑤00𝐹

𝑏 (
⌊𝜋[𝑣;𝐹 𝑏]⌋

)

+ 𝑤10𝐹
𝑏 (

⌊𝜋[𝑣;𝐹 𝑏]⌋ + (1, 0)
)

+ 𝑤01𝐹
𝑏 (

⌊𝜋[𝑣;𝐹 𝑏]⌋ + (0, 1)
)

+ 𝑤11𝐹
𝑏 (

⌊𝜋[𝑣;𝐹 𝑏]⌋ + (1, 1)
)

,

(4)

where 𝜋[𝑣;𝐹 𝑏] projects 𝑣 on to the image grid of 𝐹 𝑏, ⌊⋅⌋ floors the tuple
of projected coordinates to the nearest smaller integer coordinates,
and 𝑤 ’s are the interpolating coefficients. We compute this projection
5

𝑖𝑗
feature using several scales of the feature maps. In our implementation,
the per-vertex feature is defined as

𝑓per-vertex(𝑣) =
[

{𝑓 𝑏
per-vertex(𝑣)}𝑏={1,2,3,4,5}

]

, (5)

where [⋅] concatenates all the given feature vectors.
The projection feature establishes a direct correspondence between

3D points and 2D input images. This feature is meaningful in several
ways. First, it can act as an indicator of whether a projected point
is inside the human silhouette. Thus, the network can learn how to
move points in order to cover the silhouette. Also, because wrinkles
are represented by edges in a 2D image, the network must learn how
to deform the surface accordingly. Of course, edges can also be formed
by textures, but the disentanglement of these edge types can be trained
via supervision.

3.4.2. Vertex visibility
Projecting all points onto an image plane discounts the fact that

only certain vertices are visible in the view frustum. Therefore, it is
necessary to supply a binary visibility indicator for every point in  so
that the network can determine the reliability of the vertex features. To
this end, we first rasterize a depth image 𝐷 of  using the camera
parameters. Next, we bring all vertices into the image space via the
same camera parameters while keeping the depths 𝑧𝑣 in camera space.
We should expect the visible vertices to have similar depth values to
those of the nearest pixels in the depth image. Hence, we derive the
visibility indicator for a vertex as

𝑓vis(𝑣) =

{

1 if |𝐷(𝜋[𝑣;𝐷]) − 𝑧𝑣| < 𝜖
0 otherwise,

(6)

where 𝜖 is a small number.

3.4.3. Vertex feature
After calculating the per-vertex and global features, we extract the

feature vector for every vertex as

𝑓 (𝑣) = FC
([

𝑓coo(𝑣), 𝑓per-vertex(𝑣), 𝑓vis(𝑣)
])

, (7)

where 𝑓coo(𝑣) is the 3D coordinate of 𝑣. The FC operator mixes these
features together in order to prepare for multi-view aggregation.

3.4.4. Multi-view feature aggregation
As the network can accept a number of garment images as input,

it is necessary to aggregate the features across all views. At the same
time, we would like DReD to be able to handle an arbitrary number of
views, so the aggregation method needs to be agnostic to the number
of input images. In this work, we simply apply a max pooling operator.
In our experiments, we found that max pooling is the most robust way
and it achieves decent performance while making the network agnostic
to the number of input images. We use the aggregated features as input
to the feature diffusion process described in Section 3.2.
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Fig. 5. Mesh deformation can be recursively applied to multiple scales of the SMPL
mesh, starting with a mesh of 862 vertices and outputting 27𝑘 vertices.

3.5. Mesh deformation via Double Reverse Diffusion

3.5.1. Double Reverse Diffusion
It can be noticed that the reverse diffusion via GraphLSTM is

agnostic to the resolution of the SMPL mesh, so it can be applied
repeatedly to multiple scales of SMPL. This procedure can also be seen
as reversing the Laplacian smoothing in the 3D Euclidean space, and
hence is another reverse diffusion, which explains the name of our
method. Fig. 5 presents an unrolled view of the diffusion in 3D space.
To acquire multiple resolutions of the SMPL model, starting from the
standard one with 6890 vertices, we sub-divide the triangles to get a
high resolution mesh of 27k vertices, which is the highest resolution. To
obtain coarser meshes, following Defferrard et al. (2016b), we apply
the coarsening phase of the Graclus algorithm (Dhillon et al., 2007)
several times. Given the lowest-resolution mesh, we first predict coarse
offsets via GraphLSTM and then multiply the deformed mesh with a
sparse upsampling matrix. Then, the upsampled deformed mesh is used
as input to predict the offsets again. We perform this recursion for five
SMPL scales in our implementation. Except for the lowest resolution,
we also concatenate the interpolated GCN features of the mesh in the
previous scale to the vertex features at the current scale as

𝑓𝑛(𝑣) = FC
([

𝑓coo(𝑣), 𝑓per-vertex(𝑣), 𝑓vis(𝑣), 𝑓
up
𝑛−1(𝑣)

])

, (8)

where 𝑓up
𝑛−1(𝑣) is the upsampled feature of the lower-resolution mesh, 𝑛

ranges from 1 to 5 and 𝑓0 = 0 for all 𝑣. We note that the GraphLSTM is
shared among all scales, enabling a significant reduction in number of
parameters.

The algorithm for the proposed Double Reverse Diffusion can be
summarized and represented as shown in the table below.

Algorithm 1: Double Reverse Diffusion for 3D Mesh Generation
Require: Double Reverse Diffusion
Input : Multi-view images, body information (SMPL)
Output : Detailed 3D mesh of garments

1 for MeshDiffusionStep = 1 to 𝑁 do
2 Extract multi-scale features from multi-view images in

Eqs. (4), (5)
3 Vertex visibility check in Eq. (6)
4 Extract vertex feature 𝑓 (𝑣) in Eq. (7)
5 Feature aggregation across all views with max-pooling
6 for FeatureDiffusionStep = 1 to 𝑇 do
7 Vertex feature diffusion using GraphLSTM in Eq. (3)
8 Deform 3D mesh with given feature per vertex
9 Upsample 3D mesh

.5.2. Implementation details
In practice, to strike a balance between expressivity and diffusion

epth, we use three GraphLSTMs in our DReD. After each recursion
n a GraphLSTM, the hidden and cell states are passed to the next
raphLSTM. Thus, if 𝑛 steps are run for each GraphLSTM, the total
umber of recursions is 3𝑛. Also, low-resolution meshes may not require
s many recursions as high-resolution ones. Thus, we set the number of
6

recursions different for the five scales of SMPL (see Table 1). After the
feature extraction step, before passing to GraphLSTM, we also use a
residual graph convolutional block (Wang et al., 2020). This also adds
more computing power to the network and improves performance.

4. Training DReD

4.1. Losses

We trained the network using the following loss function

 =𝜆supsup + 𝜆CDCD + 𝜆detaildetail + 𝜆silhouettesilhouette

+ 𝜆normalsnormals + 𝜆boundaryboundary
, (9)

where {𝜆}’s are the loss weights. We provide more details on the losses
in the following sections.

4.1.1. Supervised loss
We directly minimize the Lp distance between the predicted de-

formed mesh vertices pred and the fully clothed ground truth mesh
vertices of SMPL gt. Formally, the supervised loss is defined as

sup = 1
|pred|

∑

𝑥∈pred ,𝑦∈gt

‖𝑥 − 𝑦‖𝑝𝑝. (10)

Through experiments, we found that 𝑝 = 1 can best recover sharp
wrinkles in garments, so it is our default setting.

4.1.2. Scan loss
As scan meshes contain finer details than the ground truth SMPL

models, it is beneficial to learn the details from them so as to capture
high-frequency details. We use Chamfer distance (CD) to measure the
discrepancy between a predicted mesh and a scan. For the sake of
completeness, we present the CD measure below

CD(pred,scan) =
1

|

|

|

pred
|

|

|

∑

𝑥∈pred

min
𝑦∈scan

‖𝑥 − 𝑦‖22

+ 1
|

|

scan||

∑

𝑦∈scan

min
𝑥∈pred

‖𝑦 − 𝑥‖22

, (11)

where scan denotes the scan mesh vertices.

4.1.3. Data loss
We found that despite the supervised and CD losses, the model still

hesitates to generate sharp wrinkles. To encourage the network, we
propose to use a detail loss that focuses on fine details. Let us denote the
normal vector at a vertex 𝑣 by 𝑛(𝑣). For every 𝑥 ∈ pred and 𝑦 ∈ scan,
we define the following two error terms

𝑙pred(𝑥) = ‖

‖

𝑥 − 𝑦∗‖
‖

2
2 ⋅ 1

[

𝑛(𝑥) ⋅ 𝑛(𝑦∗) > 𝛿
]

𝑦∗ = argmin𝑦∈scan
‖𝑥 − 𝑦‖22

, (12)

and

𝑙scan(𝑦) = ‖

‖

𝑦 − 𝑥∗‖
‖

2
2 ⋅ 1

[

𝑛(𝑥∗) ⋅ 𝑛(𝑦) > 𝛿
]

𝑥∗ = argmin𝑥∈pred
‖𝑦 − 𝑥‖22

, (13)

where 1 [⋅] is an indicator function, ⋅ the vector dot product, and 𝛿 a
threshold. Then, the detail loss is computed based on a Geman-McClure
function (Barron, 2019; Pons-Moll et al., 2017) as follows

detail =
∑

𝑥∈pred

𝑙pred(𝑥)

𝑙pred(𝑥) + 𝜎2
+

∑

𝑦∈scan

𝑙scan(𝑦)
𝑙scan(𝑦) + 𝜎2

, (14)

where 𝜎 defines a threshold for outlier. Intuitively, this loss targets
vertices having similar neighborhoods as ground truth.
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4.1.4. Silhouette loss
To better establish correspondences between the predicted mesh

and the input images, we make use of a loss function between the sil-
houette of the deformed SMPL 𝑆𝑖 and the binary mask 𝑀 𝑖 of garments
in the 𝑖th view. To make the silhouette differentiable with respect to
he vertex positions, we render the mesh with white color and without
hading using a differentiable renderer (Ravi et al., 2020). We render
he silhouettes using the same intrinsics and extrinsics as the input
iews. The silhouette loss is calculated as

silhouette = 1
𝑁

𝑁
∑

𝑖=1
‖𝑆 𝑖 −𝑀 𝑖

‖

2
2, (15)

where 𝑁 is the number of input views.

4.1.5. Normal loss
We also enforce the similarity of normals between the predictions

nd the ground truths via a cosine similarity as

normals =
1

|pred|

∑

𝑥∈pred ,𝑦∈gt

(

1 − (𝑛(𝑥) ⋅ 𝑛(𝑦))2
)

, (16)

where ‘‘⋅’’ is the vector dot product.

4.1.6. Boundary loss
As we have segmentation of garments, we define the boundary

between different classes to be the vertices that have at least one
neighbor, not from the same class. The boundaries can be found by
running a breadth-first-search on the labeled meshes. We would like the
network to be aware of the borders between different pieces of clothes
even without segmentation. Let us denote 𝑗

𝑖 for boundary 𝑖 of label 𝑗.
The boundary loss is defined as

boundary =
∑

𝑖,𝑗

1
|𝑗

𝑖 |

∑

𝑥∈pred ,𝑦∈gt
𝑥,𝑦∈𝑗𝑖

‖𝑥 − 𝑦‖22. (17)

.2. Dataset

We used the Sizer dataset (Tiwari et al., 2020) as it contains scans,
can textures, scan segmentations, registered SMPL models, and color
mages. This dataset contains basic clothing types such as T-shirts,
ong/short-sleeved shirts, pants, shorts, hoodies, and so on. All people
re captured in A-pose. We rendered sixty views per scan into RGB
mages and segmentation maps. We randomly divided the dataset into
raining and test sets based on personal identity. We then trained on
he training portion and tested on the rest. However, the Sizer dataset
ontains only A poses and clothes are repetitive. Therefore, to test the
eneralizability of the method, we recruited the MGN dataset (Bhatna-
ar et al., 2019) which is similar to Sizer but it contains many diverse
oses in addition to the A-pose and both the garment form and textures
re unique and more diverse.

.3. Input data

In our experiments, for both datasets, we used four views if not
entioned otherwise. In an ablation study in which we reconstruct with

n arbitrary number of views, each batch randomly includes one to
our views. We used an image resolution of 512 × 512. We applied
garment segmentation mask obtained by QANet (Yang et al., 2022)

o the input image to remove all identity information, preventing the
etwork from memorizing the faces, which can improve the general-
zability. Note that during inference, only background subtraction is
eeded for the input images. To overcome the repetition of garments,
e augmented the data by modulating the brightness and saturation of
7

he input images. This helps the network much less prone to overfitting.
Table 1
Numerical results when using different backbones for DReD. The best two numbers are
highlighted in boldface.

Backbone #params Recursion pattern 𝐿sup
(×1e−2)

CD
(×1e−3)

GCN 4.25M 1, 1, 1, 1, 1 0.724 0.217

GraphResBlock
4.25M 1, 1, 1, 1, 1 0.701 0.232
3.96Ma 1, 1, 1, 2, 2 0.751 0.255
3.96Ma 1, 1, 2, 2, 3 0.681 0.233

GraphLSTM
4.25M 1, 1, 1, 1, 1 0.705 0.251
4.25M 1, 1, 1, 2, 2 0.707 0.220
4.25M 1, 1, 2, 2, 3 0.680 0.214

GraphLSTM (w/o EMA) 4.25M 1, 1, 2, 2, 3 0.693 0.220

a Cannot increase due to memory constraint.

4.4. Training details

We trained the network with an AdamW optimizer (Loshchilov and
Hutter, 2019) with a learning rate of 1e−4. A weight decay term was set
o 1e−6. The batch size was 2 and the experiments ran for 300 epochs,
hich takes about 4 days on an NVIDIA 2080 RTX. Additionally, we
pplied an exponential moving average (EMA) scheme to the model
eights (Izmailov et al., 2018). We updated the EMA every iteration
ith a decay of 0.999. We found that the model with EMA weights is
arginally better in terms of quantitative metrics.

. Experimental results

.1. Evaluation metrics

To assess the performance of our network, we measure the discrep-
ncy between the predictions and both the scans and ground truth
MPLs. Because the prediction itself is an SMPL, we simply use 𝐿sup,
hich is L1 distance, between the prediction and the ground truth
MPL. Also, we measure CD between the predicted mesh and the
round truth scan as they have different number of vertices.

.2. Ablation study and analysis

In this section, we perform a thorough assessment of each compo-
ent in our system to make sure that all choices are optimal. When
onducting the ablation study, all training details were maintained with
he same settings as described in Section 4.4.

.2.1. Diffusion backbone
Firstly, we validate the choice of GraphLSTM as a diffusion unit. We

ompare our GraphLSTM with a simple cascade of GC layers and a se-
ies of residual GC blocks (Wang et al., 2020) with or without recursion.
o compare numerically, we recruit 𝐿sup and CD. While 𝐿sup compares
he prediction with ground truth SMPL, which covers the low- and
id-frequencies, CD compares with ground truth scan which contains
igh-frequency components. As can be seen in Table 1, a simple cascade
f GC layers does not produce good results, reflected by the high
rrors, especially for 𝐿sup. Employing residual GC blocks (GraphRes-
lock) (Wang et al., 2020) helps reduce the errors, especially the
upervised loss. Out of the three backbones, our GraphLSTM achieves
he best supervised loss and CD. In terms of memory, GraphLSTM has
etter memory utilization as GraphResBlock cannot perform recursion
ith the same number of parameters as GraphLSTM if we are to keep
ll the training details the same. Another interesting observation is
hat the performance gets better as more recursion loops are added
or the GraphLSTM backbone. Though not as clear, this observation
lso applies to GraphResBlock. In short, the choice of GraphLSTM with
ecursion brings the best performance in our experiments, and hence
ill be our default choice if not otherwise mentioned.

Furthermore, we investigate the use of EMA. As seen in the last
ow of Table 1, using only the trained weights marginally decreases the
umerical results. Therefore, we keep using EMA in all our experiments.
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Fig. 6. Qualitative comparison between L1 and L2 supervised losses. L2 loss makes the network produce more details as shown in the dotted oval, but at the same time induces
more noise as can be seen in the solid oval regions.
Fig. 7. Visualization of the forget gate activations in the final scale of SMPL. We recurse three times for each of the three GraphLSTM cells, which constitutes eight forget gate
activations. We average the channels of each activation and display using the colormap shown on the right. The topological propagation of information is indicated by the black
arrow.
Table 2
Ablation study on the visibility features and data augmentation. ‘‘-’’ indicates the
ablated component. Best numbers are highlighted in boldface.

-Vertex visibility Visibility pooling -Augmentation Full

𝐿𝑠𝑢𝑝 0.725 0.728 0.716 0.680
CD 0.238 0.245 0.236 0.214

Table 3
Ablation study on the loss function components. ‘‘-’’ indicates the ablated component.
Best numbers are highlighted in boldface.

-sup -CD -data -silhouette -normals L2 Full

𝐿𝑠𝑢𝑝 1.060 0.693 0.717 0.719 0.703 N/A 0.680
CD 0.224 0.227 0.227 0.250 0.219 0.201 0.214

5.2.2. Features
Secondly, we shed light on the impact of the visibility features

on the final results. As can be seen from Table 2, even though the
visibility indicator is only a scalar, it has a huge influence on the final
performance. Omitting this feature raises both the quantitative errors
measured by sup and CD. Additionally, we perform multi-view pooling
using the vertex visibility to compare with the max pooling used in our
work. Concretely, given the visibility of vertices in different images, we
calculate the average of the vertex features from only the views that the
vertex is visible. For vertices that are not visible in any view, we simply
take the mean of the features of visible vertices so that the network
can reason about these points based on all visible points. The result of
this visibility pooling is shown in Table 2. As can be seen, the errors
are higher than those achieved by max pooling, thus max pooling is a
better choice for multi-view feature aggregation in our case.

5.2.3. Loss functions
Next, we measure the importance of the losses by omitting each of

these terms one by one from the total loss. We detail our findings in
8

Table 3. As can be seen, the performance degrades without any of those
losses. Training without either sup or CD results in higher error for
the other distance. Each of the other losses also causes a huge decline
in performance if it is omitted. Thus, each loss term has some certain
contribution to the final performance.

We also tried replacing the L1 loss with L2 and as expected, the CD
error is much smaller when training with L2. Because CD can capture
high frequencies in the scans, it is expected that the predicted meshes
would carry more details. Fig. 6 shows an example of the predicted
meshes from two models trained with L1 and L2 losses. Even though
the L2 results do possess more details as seen in the thin dotted regions,
they also suffer from high-frequency spikes shown in the solid ovals.
This is due to the fact that L2 loss value has a much smaller range than
that of L1, so when training with L2, CD loss dominates in the total
loss, which results in too much high frequency in the final outputs. It
is also more difficult to tune suitable weights for the losses partly due
to the correlation between L2 and CD, and we are satisfied with the
current quality, so we leave further exploration for future work.

5.2.4. Importance of anonymity
In Alldieck et al. (2019) and Bhatnagar et al. (2019), the authors

emphasized the importance of not leaking person identity because this
may cause overfitting. We confirm this in our experiment, as training
without covering the person identities leads to serious overfitting.
However, the authors in Alldieck et al. (2019) and Bhatnagar et al.
(2019) hid the identities by using segmentation maps as inputs, so
the generated wrinkles are very limited. Meanwhile, we do so by
masking all the skin regions and heavily rely on data augmentations
during training, which effectively preserve 2D wrinkle information in
the inputs, which results in much better performance. As shown in
Table 2, excluding augmentation results in a huge loss in performance.

5.2.5. Visualization of forget gate activations
Forget gate is an important and intuitive gate in LSTM. Its role

is to control the amount of past information propagated to the next
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Fig. 8. Qualitative results our model against Colmap (Schonberger and Frahm, 2016), Octopus (Alldieck et al., 2019), MGN (Bhatnagar et al., 2019) and P2M (Wang et al., 2020).
We show two of the four input images and the corresponding views of the 3D meshes.
layer. Here, we expect that each vertex diffuses information differently,
which can be simulated via the forget gate. In order to verify our
hypothesis, we visualize the forget gate activations in Fig. 7. We show
eight activations resulting from three recursions of three GraphLSTM
cells. These activations are extracted from the processing of the highest
resolution of SMPL. We average the channels of each activation and
apply a colormap for visualization. As can be seen in the figure, the
forget gates are activated very differently among vertices. Also, the
forget gates tend to be activated at the beginning and end of the
recursion, with the strongest activations occurring in the first loop of
the second GraphLSTM (the third activations in Fig. 7). Unfortunately,
due to the highly abstract features learned by the network, it is difficult
to explain and recognize any intuitive patterns from the figure. We
leave this question for our future work.

5.3. Qualitative results

5.3.1. Sizer dataset
To qualitatively quantify our method, we compare DReD against

Colmap (Schonberger and Frahm, 2016), Octopus (Alldieck et al.,
2019), MGN (Bhatnagar et al., 2019) and P2M (Wang et al., 2020).
Colmap (Schonberger and Frahm, 2016) perfected the traditional
structure-from-motion pipeline and generally produces high-quality
reconstructed dense point clouds from a set of images, which can be
turned into meshes via Poisson reconstruction (Kazhdan et al., 2006).
We used sixty views for Colmap reconstruction. Octopus (Alldieck et al.,
2019) and MGN (Bhatnagar et al., 2019) are two deep learning-based
9

methods that share a similar goal to ours. Octopus predicts poses and
vertex offsets while MGN is a template-based method that predicts
each garment detected in the input image. Both of them first predict
rough garments using segmentation maps, and then optimize the output
against silhouettes for more garment details. Finally, P2M (Wang et al.,
2020) is a vertex deformation method that was originally proposed for
simple object reconstruction such as chairs, tables, cars, and so on.
We adapted P2M by simply reducing the number of parameters to be
similar to ours and trained P2M from scratch using our same training
recipe.

Some examples of the reconstructed meshes are shown in Fig. 8.
Among all the methods, Colmap (Schonberger and Frahm, 2016) regis-
ters a near-ground-truth quality as the reconstructed garments are very
realistic. The major problem with Colmap is that it is susceptible to
unexpected failure due to the matching process and it may require to
tune hyper-parameters for different scenes. Besides, because of relying
on feature matching, it requires a large number of views for a dense
reconstruction and also takes much time for the process. Meanwhile,
our method needs only four views and its runtime is only a fraction of
a second.

Other deep learning methods underperform Colmap and DReD.
Octopus (Alldieck et al., 2019) and MGN (Bhatnagar et al., 2019) could
not generate wrinkles due to the choice of using segmentation maps
as input. Even the post-optimization cannot help because silhouettes
cannot convey intricate deformations of garments. We argue that this
is not an efficient strategy because to cover all wrinkles, there needs
to have a significant number of silhouettes due to a high degree of
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Fig. 9. Qualitative results on the MGN datasets (Bhatnagar et al., 2019) between MGN (Bhatnagar et al., 2019) and our proposed method. We show two of the four input images
and the corresponding views of the 3D meshes.
Fig. 10. Qualitative results of our model when testing on novel garment classes. We held out the t-shirt and tank-top classes for testing.
freedom. We resolve this problem by using RGB images but filter
out the identities together with data augmentation. As a result, our
reconstructed garments possess highly realistic wrinkles that faithfully
follow those observed in the input images. Additionally, in the case of
hoodie and tank-top, template-based MGN always fails as there is no
corresponding template. Even in the case in which a template exists like
the short pants in the last row, MGN still fails due to the size difference,
while offset-based methods like Octopus and ours can handle it easily.
Thus, template-based methods are not versatile enough to cover a
wide variety of garments in practice. In addition, while optimization
methods like Octopus, MGN or Colmap usually take around 3 min
and even more, the inference time of our model is several order of
magnitude faster, which is 0.945 s on a single RTX 2080Ti.

P2M (Wang et al., 2020) achieved good results as it can produce
highly sharp wrinkles and is very competitive to ours. Nonetheless, the
results are still noisy and wrinkles in some places are over-generated.
Our method not only can reconstruct more accurate wrinkles but is also
more memory-efficient than P2M.

5.3.2. Novel garment class
Sizer provides garment classification classes, for e.g., shirt or t-shirt,

so it is possible to conduct an experiment in which the network is
10
trained on certain clothing classes and then tested on the rest. This
experiment is challenging as it requires the networks to be able to
generalize to unseen garment topologies. In our experiment, we trained
DReD on all long top clothes including shirt, vest, hoodie, and so on,
and held out the t-shirt and tank-top classes for test. The results of this
experiment are shown in Fig. 10. It is clear that even though these
clothes are new to the network, our method can still predict accurate
clothing forms and reconstruct fine wrinkles on the garments. This
experiment clearly shows a strong generalizability of our method.

5.3.3. Novel pose and diverse garment texture
The Sizer dataset contains only human models with A-pose and

garments have very simple textures. A natural question is whether the
method can generalize to unseen diverse poses and clothes. Hence,
we resort to the MGN dataset (Bhatnagar et al., 2019) which has
unique poses and clothes. Fig. 9 shows some results of MGN and ours
on this method. As can be seen, MGN performed well in this case
because it was trained on this dataset. However, the main problem with
template-based models is still there as it is not possible to predict out-of-
template garments as shown in the top left example. Meanwhile, DReD
performed robustly throughout the whole dataset, be it an unusual pose
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Fig. 11. Single-view garment reconstruction by PIFuHD (Saito et al., 2020), ICON (Xiu et al., 2022) and our proposed method. We used the images in the first column as inputs.
For ICON, we additionally show the results when using back-view images. For our method, we additionally show the back view and the 4-view outputs as a reference.
Fig. 12. Single-view garment reconstruction for in-the-wild images by ICON (Xiu et al., 2022) and our proposed method. We show both the visible and occluded sides of the
reconstructed meshes.
or colorful textures. Interestingly, in the bottom right corner, it can
be observed that the predicted mesh was deformed according to the
number ‘‘8’’ on the t-shirt. This is attributed to limited data as the model
has never encountered such difficult textures in the Sizer dataset. It is
possible to disentangle actual wrinkles and textures by training on a
dataset with more diverse clothes via 3D supervision. All in all, the
results in this section strongly evidence that our method is capable of
learning clothing deformations from multiple 2D images.

5.3.4. Single-view reconstruction
Despite learning to predict from multiple images, our method is

flexible enough to be able to reconstruct from a single RGB thanks
to the robust max-pooling. Because it is not easy to acquire multi-
view images in real life, it is important to be able to reason from a
single image. Thus, we test our method using a single image on the
MGN dataset and compare our results with state-of-the-art single-view
methods: PIFuHD (Saito et al., 2020) and ICON (Xiu et al., 2022). We
used the ground truth SMPL pose and shape information for ICON.
Some visualizations are compiled in Fig. 11. In this scenario, we used
the first column of the images as input for all the methods. Additionally
for ICON, we show their results with the back-view images in the third
11
column of their results. Unlike PIFuHD, ICON is able to handle back-
view images as it leverages a strong SMPL prior. For PIFuHD and our
method, we also show the back-view for reference. In terms of wrinkles,
PIFuHD performed well as their meshes contain many details. However,
upon a closer look, it can be noticed that there are many artifacts and
the meshes are generally not smooth. ICON seems to be more stable
as it conditions on SMPL, but the results still lack fine details. Even
though our meshes do not possess as many wrinkle details, overall they
look less noisy thanks to the strong human prior powered by SMPL.
Also, the meshes from PIFuHD have different topologies and cannot be
re-purposed easily. On the other hand, our SMPL-based meshes have
unified topology and can be readily re-animated thanks to the accom-
panied skinning weights. All in all, DReD is able to generalize well
enough to predict even from a single view, making it more applicable
in practice.

In addition, we perform an experiment on in-the-wild images to
validate the generalizability of our method. For this purpose, we recruit
the Up3D dataset (Lassner et al., 2017), which provides human-centric
photos in daily life and fitted SMPL parameters. We show some of these
results in Fig. 12. Again, we compare our method with ICON (Xiu et al.,
2022). As can be seen from the figure, our results look comparable to
those of ICON, but sometimes are not as good in terms of sharp wrinkles
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Fig. 13. (a) Partial and complete texture segmentation maps. (b) Partial and complete color texture maps.
Table 4
Quantitative results of our proposed method and P2M (Wang et al., 2020). Best numbers
are highlighted in boldface.

Method #params 𝐿sup
(×1e−2)

CD
(×1e−3)

P2M (Wang et al., 2020) 4.88M 0.805 0.307
DreD 4.25M 0.680 0.214

because ICON is trained on a much larger and more diverse dataset, and
due to the slightly inaccurate SMPL fitting and the low quality of the
image. Note that facial features may look distorted as DReD does not
learn to deform skin regions. ICON has a post-optimization step, which
can fix the imprecision to deliver better reconstruction quality in some
cases, but at times it can back-fire heavily like the first two rows of
the second column. Still, this experiment shows that our method has
a good potential to generalize well despite not being engineered as a
single-view method.

5.4. Quantitative results

Because Octopus (Alldieck et al., 2019) and MGN (Bhatnagar et al.,
2019) predict view-dependent meshes, it is not easy to align their
results to ours. We tried matching the bounding boxes of their results
to the bounding boxes of the corresponding ground truths and then
computed the L1 distance between the predictions and ground truths.
We obtained the distance of 0.379 for MGN and 0.0068 for our method.
We note that the large errors come from the fact that not only MGN
predictions are imprecise, but also the alignment is highly inaccurate
because the bounding box highly depends on the offsets of the mesh.
Thus this is not a fair comparison to MGN. Therefore, we show only the
numerical results of ours versus P2M (Wang et al., 2020) as tabulated
in Table 4. As can be seen, DReD achieves much better performance
than P2M. Note that P2M can also be seen as a form of diffusion, but
they employ different networks in different SMPL scales. Meanwhile,
our recursive diffusion can provide longer diffusion at lower memory
footprint.

5.5. Textured mesh reconstruction

For completeness, we demonstrate the reconstruction of textured
mesh. After obtaining deformed meshes, we follow Alldieck et al.
(2018a) to stitch texture maps from the multi-view images. Concretely,
first of all, partial textures are extracted by unwrapping each 2D view
into a predefined SMPL UV space as shown in the left of Fig. 13(b).
In addition, we unwrap the corresponding segmentation maps which
consist of three labels: upper and lower garments, and everything else
as can be seen in Fig. 13(a). Then, we solve a multi-label graph-cut
optimization to fuse the partial texture segmentation maps. Using the
same graph created above and the complete texture segmentation,
we then merge the partial RGB textures and use a simple inpainting
method (Telea, 2004) to complete the texture map as shown in the right
of Fig. 13(b). We demonstrate some textured meshes obtained this way
in Fig. 14. As can be seen, the textures are estimated well thanks to the
12
precise deformation of the vertices. These results serve as proof that
DReD is capable of making realistic 3D textured avatars, which enables
many interesting applications in immersive contents.

5.6. Discussion and limitation

Through the rigorous experiments, we have shown that our DReD
can reconstruct very detailed garments while being much faster com-
pared to previous works that employ optimization. The reverse diffu-
sion process predicts vertex deformation by conditioning on a large
neighborhood, which makes the prediction more reasonable. As the
diffusion is modeled by the recursion of an our proposed GraphLSTM,
the physical memory can be saved up compared to methods that utilize
large neural networks. Our method may not be as good as implicit
ones at predicting sharp features as those methods enjoy more freedom
in predicting output meshes, but they are susceptible to producing
unreasonable garment deformation.

Nevertheless, our method suffers from several limitations. First, our
method is not suitable for loose clothes and dresses, partly due to the
lack of these types of garments in the training dataset. Second, it is
difficult to deal with multiple layers of clothes. To resolve this problem,
we can rely on the segmentation labels of different clothes and predict
the corresponding offsets like MGN (Bhatnagar et al., 2019). Lastly, our
method requires a good SMPL fitting. ICON, MGN and Octopus escape
this pitfall by utilizing a post-optimization step. In the future, we can
bake the finetuning of SMPL parameters into the model and train in a
differentiable manner to correct the SMPL prediction on-the-fly.

6. Conclusion

We introduced a multi-view garment reconstruction solution named
DReD. At the center of our solution lies an assumption that recon-
struction is the inverse problem of smoothing, which is described by
a forward diffusion process. Our framework proposed to reverse this
smoothing process by simulating the reverse diffusion process via a
recursion. Starting from a naked human body in the form of SMPL,
we gradually diffuse the vertex features and predict per-vertex offsets
to reconstruct a fully-clothed body whose clothes are described in
the input images. In order to control the diffusion for mesh vertices,
we introduced GraphLSTM which is a customized LSTM for graph
signals. To get the features for the diffusion process, we extract features
from the multi-view images and transfer the to the mesh vertices via
reprojection. The same deformation pipeline can be repeatedly applied
to multiple SMPL resolutions, which can be seen as another reverse
diffusion process. Extensive experiments demonstrate that DReD can re-
construct garments with greater realism and detail compared to leading
methods. Qualitatively, the results on detailed wrinkles are superior,
and quantitatively, they achieve a reduced error rate of only 69% ∼
84%. Moreover, DReD is able to generalize to unseen human poses
and complex textured garments with satisfactory visual results. In the
future, the success of our diffusion approach opens up new interesting
application directions with other diffusion models, for e.g., DDPMs, in-
cluding animating results for motion or ensuring temporal significance.
Also, it is interesting to see how we can use a high-quality static scan

model of the same human to improve the temporal prediction quality.
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Fig. 14. Textured mesh reconstruction. First, clothed human meshes are reconstructed by DReD and then, texture maps are unwrapped via Alldieck et al. (2018a).
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