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Abstract: Multiple object tracking (MOT) is a fundamental task in vision, but MOT techniques for
plenoptic video are scarce. Almost all 2D MOT algorithms that show high performance mostly use the
detection-based method which has the disadvantage of operating only for a specific object. To enable
tracking of arbitrary desired objects, this paper introduces a groundbreaking detection-free tracking
method for MOT in plenoptic videos. The proposed method deviates from traditional detection-based
tracking methods, emphasizing the challenges of tracking targets with occlusions. The paper presents
specialized algorithms that exploit the multifocal information of plenoptic video, including the focal
range restriction and dynamic focal range adjustment schemes to secure robustness for occluded
object tracking. To the improvement of the spatial searching capability, the anchor ensemble and the
dynamic change of spatial search region algorithms are also proposed. Additionally, in terms of MOT,
to reduce the computation time involved, the motion-adaptive time scheduling technique is proposed,
which improves computation speed while guaranteeing a certain level of accuracy. Experimental
results show a significant improvement in tracking performance, with a 77% success rate based on
intersection over union for occluded targets in plenoptic videos, marking a substantial advancement
in the field of plenoptic object tracking.

Keywords: multiple object tracking; plenoptic video; occluded target; multifocal information;
time scheduling

1. Introduction

Plenoptic imaging is one of the light field capturing techniques that reproduces the
distribution of light rays emitted from an object. By placing the camera array, a sampling of
the light field with the directions and the intensities of outgoing radiances from a scene can
be captured. Because a plenoptic video includes both spatial and angular information in a 3D
space, functions such as changing a viewpoint, refocusing, and adjusting a sense of depth can
be given by processing focal information delivered from rays within 3D volume [1,2]. Through
calibration and refocused rendering by using multiple images, a plurality of focal regions
called focal planes constitute a focal stack which makes such post-processing possible [3].
Previous plenoptic-related research mainly focused on image acquisition, visualization,
and display, that is, implementation of the hardware side [4]. However, in the recent field
of plenoptic imaging, research is conducted in a wide range of various fields of computer
vision that infer higher-level information as human perception, such as detection and
semantic segmentation, but research on object tracking is inactively conducted [5,6]. As
the demand for realistic and immersive content representing 3D space is emerging, the
advanced tracking technique for editing the object and scene (e.g., deletion, completion,
synthesis, emphasizing salient region, etc.) in producing and post-processing is required.

In recent, most existing visual object tracking (VOT) algorithms have been limited to
general 2D videos, and the development that utilizes the focal information of a plenoptic
sequence is scarce. In the 2D scenario, high-reliability tracking is still impossible in relation
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to scenes including occlusions in which the target object is obscured by the occluder, and
there are technical huddles in which it is difficult to easily derive a solution [7]. Whereas, in
the case of a plenoptic sequence reconstructed through parallax between images captured
by multiple cameras. Hereby, there are appearance features of the object that are weakly
present in the focal stack, and whose focal information can be applied to track the occluded
target as shown in Figure 1. Based on such characteristics, we adopted that focal information
to track the occluded target and proposed the focal range restriction and dynamic focal
range adjustment algorithms, which improve the robustness of tracking performance in
the plenoptic sequence.

Figure 1. Comparison of 2D and plenoptic multiple object tracking when occlusion occurs. (a) One of the
target objects is invisible in a 2D sequence due to an occluder. (b) Weak appearance of a corresponding
target object exists in a plenoptic video constituted of multifocal planes along the depth.

As the object detection technique develops, most multiple object tracking (MOT)
techniques have been performed through the detection-based tracking (DBT) approach [8].
However, the DBT methods can only deal with specific targets included in the training
labels (e.g., pedestrians, vehicles, faces, etc.), thus there are limitations in tracking user-
defined objects. From a practical post-processing point of view, a producer needs to track
the desired target and correct it with the manual selection of the interested region. Therefore,
we investigated the MOT approach by using multiple single-object trackers aiming for
detection-free tracking (DFT) without an additional pre-detection overhead.

Towards this, our approach is to develop plenoptic VOT first and then utilize multiple
VOT trackers to plenoptic MOT. For this purpose, we built a plenoptic baseline tracker
using the modified 2D VOT model to track the target by calculating the similarity over all
of the focal planes. When using the developed plenoptic baseline tracker naïvely, plenoptic
VOT encounters problems such as exploring excessive focal regions and not being able
to track sudden movements of objects along the depth. Such problems are resolved by
the proposed algorithms, the restriction of the focal range, and dynamically adjusting it
based on similarity. In addition, to further improve tracking performance, the spatial search
corresponding focal information has also to be developed. In this paper, we propose a
method that takes a mean ensemble of the results of the inferred boxes of anchors and a
method to dynamically change the spatial search region at each time.

To deal with multiple objects, a bundle of single-object plenoptic trackers has to be
processed simultaneously and long-term tracking as fast as possible. When MOT is per-
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formed by simply copying VOTs, a long processing time is consumed due to computational
complexity. To cope with this, we propose a method that dynamically skips tracking less
important targets based on their movement at every frame called motion-adaptive time
scheduling. By leveraging the motion adaptive time scheduling algorithm with considera-
tion of multiple trackers, we verified that the tracking speed is improved compared to the
naïve scheduling approach. In this paper, we compare MOT by using naïve parallelization,
fairtime, and motion adaptive scheduling techniques for investigating effective ways of
MOT. In the naïve parallelization, the number of single trackers is set to the number of
objects to be tracked. Although each tracker can perform stable tracking without any
dependency on each other, this requires heavy computation and long processing time.
The fair-time scheduling is to have each tracker dominate a frame so that for N trackers,
each tracker tracks once per N frames. This is designed to dramatically improve speed
by reducing the number of tracker executions, but it is not realistic because it assumes
that objects do not move much. The motion adaptive scheduling is to perform tracking
based on the movement speed of the object. This method detects an abrupt movement
change and applies it to the tracking, and which approach allows us to increase speed while
maintaining tracking accuracy.

The main contribution of this work is three-fold: (1) We newly introduce the DFT
MOT approach targeting plenoptic video. (2) We demonstrate that the proposed focal
range restriction and dynamic focal range adjustment algorithms lead to improved tracking
performances on the occluded target by utilizing multifocal information implied in the
plenoptic video. (3) We propose motion-adaptive time scheduling which achieves improved
MOT speed while guaranteeing a competitive performance.

2. Related Work
2.1. Visual Object Tracking

The purpose of VOT is to build a model that robustly responds to changes in the object’s
appearance and the object has to be tracked by deriving the relationship between the current
frame and the previous frame. Bertinetto et al. [9] presented SiamFC, a Siamese network-based
method that tracks an object by calculating the cross-correlation between features embed-
ded through a weights-sharing backbone. Since then, a number of trackers developed using
the Siamese neural network base have been proposed. He et al. [10] introduced SA-Siam
which utilized an ensemble technique that increases the success rate of tracking by reflecting
the inference results from a pre-trained semantic embedder along with the existing SiamFC.
Wang et al. [11] proposed SiamMask, which simultaneously performs object segmentation
as well as object tracking through multi-task learning. SiamRPN [12] and SiamRPN++ [13]
added a region proposal network (RPN) in order to improve tracking performance by using
anchors and learning start from default boxes. Guo et al. [14] proposed SiamCAR that tracks
objects by performing regression and classification of bounding boxes in a pixel-wise manner
to compensate for the disadvantages of vague parameter setting in anchor setting, which is
a chronic problem on hyperparameter tuning lied in RPN. More recently, transformer-based
tracking schemes have been introduced. Wang et al. [15] leveraged a Siamese-like tracking
pipeline by combining with transformers to learn the distance between target and search region
based on cross-attention. MixFormer [16] proposed the mixed attention module aiming for the
estimation of the template’s similarity. SeqTrack [17] removed the prediction head, and adopted
transformer encoder–decoder architecture to generate a sequence of bounding boxes autore-
gressively. However, such single-object trackers inevitably encountered the occlusion problem
of the limited visual information underlying 2D video; thus, in this paper, we design a more
robust tracking scheme by utilizing the focal stack information given in the plenoptic sequence.

2.2. Multiple Object Tracking

Almost all MOT techniques detect objects first and then maintain the identity of each
object frame-by-frame, but their main purpose was to establish a versatile mid-level model
for developing higher-level tasks, e.g., behavior analysis, visual surveillance, and action
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recognition. Hwang et al. [18] presented a technique for multi-target and multi-camera
scenarios, a multi-pedestrian detection dataset for surveillance systems, and promoted the
development of re-identification. Bewley et al. [19] proposed a simple online and real-time
tracker SORT, a technique that combines the Kalman filter and the Hungarian algorithm
for MOT. Zhang et al. [20] introduced a FairMOT that composes object detection and re-
identification into one integrated neural network for MOT infers it and showed remarkable
performance. MixSort [21] integrated both motion-based association and appearance-based
association models for responding to both fast motion and undistinguishable appearance.

As shown in previous works, most MOT techniques employed the DBT approach,
which implies that detection quality has a great influence on tracking performance. Above
all, the MOT techniques of the DBT approach cannot track a desired target object which is
impractical in commercial scenarios. Moreover, such methods make it difficult to utilize
the focal information given as independent planes in the plenoptic sequence since the
tracking process cannot be separated from a unified framework. Consequently, previous
MOT methods can only deal with specific targets, there are limitations in applying them to
user-defined objects for plenoptic videos pursued in our goal.

3. Plenoptic Object Tracking
3.1. Baseline Tracker

In the proposed plenoptic tracker, the foundation model for object tracking uses
SiamRPN++ [13]. At the first frame, after the user manually designates the region of interest
on the 2D frame, the target object is tracked by performing similarity calculation us-
ing the Siamese network for all focal planes in the focal stack for the subsequent frame.
Figure 2 depicts the extraction of features in the focal planes that make up plenoptic
videos. The ResNet50-based backbone extracts both encoded representations of the target
object template and the focal plane, and after extracting and concatenating three interme-
diate features, the similarity was used as the final feature map for prediction. The fea-
ture map extracted here consists of 256 channels, and in the target object exemplar, two
4 × 4 × (4 × 5 × 256) size feature maps for bounding box coordinate prediction and for
objectness classification, respectively. For each focal plane used for a search image, a feature
map of size 20 × 20 × 256 is extracted; thus, if there are K focal planes in the focal stack, a
total of K feature maps are fed into the RPN.

Figure 3 shows the estimation of the similarity for bounding box prediction and object-
ness classification through cross-correlation between the feature maps finally extracted. The
feature maps of the target object template and the focal plane extracted from the backbone
are refined through convolution with 1× 1 kernels. Then, similarity maps for box prediction
having the relationship between the features extracted from the target and search region
are estimated through a cross-correlation operation (utilizing Conv2D for implementation)
as used in SiamRPN++ [13]. By performing the depth-wise cross-correlation operation
between the final features, a map of size 17 × 17 × (4 × 5) is predicted, containing the
information of each of the four coordinates (x, y, h, w) for the representation of the five
bounding boxes per anchor. Then, a 17 × 17 × (2 × 5) similarity score map is computed
for each of the five bounding boxes per anchor to perform the classification of the object
and background. Consequently, by selecting the maximum value in the similarity maps,
the region with the highest similarity is determined as the location of the object, and then
object tracking works for the plenoptic sequence.

3.2. Focal Range Restriction

When the similarity is calculated for all focal planes in the focal stack based on the
target object template through the baseline model and the region with the highest similarity
is determined as the tracked object, object afterimages are generated due to reconstructed
rendering from multiple images to the focal stack, which results in failure to track. Since it
exists across multiple focal planes, the problem of being tracked to a position unrelated
to the actual object arises. Moreover, if the search region for all focal planes in the focal
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stack is specified, not only the amount of computation is excessive, but also the accuracy of
predicting the coordinates of the bounding box is reduced. Because the maximum similarity
score is yielded in the vast amount of focal information irrelevant to the target object and
tracking fails, this paper proposes a restriction algorithm for the focal range.

Figure 2. Feature extraction for plenoptic object tracking over the multiple focal planes.

Figure 3. Bounding-box regression and objectness classification through similarity estimation for
plenoptic object tracking.
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For example, if the k̂1th focal plane in Fr
1 shows the highest similarity, rfocal plane

candidate groups are regenerated centering on the k̂1th focal plane in the second frame,
and these are formed into the Fr

2 focal stack. And in the second frame, the similarity for
all focal planes in the Fr

2 focal stack is calculated, and the k̂2th focal plane with the highest
similarity is configured as the search area in the third frame. This process is schematized in
Schematic Figure 4, which shows the algorithm for limiting the focus range in each frame.

Figure 4. Focal range restriction algorithm at each frame. The method constrains the search area
along the depth around the k̂-th focal plane having the maximum similarity in the immediately
preceding frame.

When the optimal focal plane It−1
k̂

has the maximum similarity and whose index

k̂t−1 is selected from the focal stack Ft−1
r of the (t − 1)-th frame (i.e., previous frame), the

operation is performed considering only the focal planes of r centered on the k̂t−1-th focal
plane, and then a new focal stack having a limited range is formed.

Ft
r =

{
It
k|k = (k̂t−1 − r, . . . , k̂t−1 + r).

}
(1)

After that, the tracker works on the newly constructed Ft
r for the t-th frame (i.e., current

frame), and then the k̂t-th focal plane containing the target object region is obtained by
calculating the similarity score st

k as stated in Section 3.1 for the corresponding restricted
focal stack Ft

r .

k̂t = argmaxst
k

{
st

k|k =
(

k̂t−1 − r, . . . , k̂t−1 + r
)}

. (2)

Note that, since the restricted focal stack is undefined at t = 0 (that is, k̂−1 cannot
exist), every focal plane in the focal stack F is used to track the target in the first frame.

This method seeks to achieve more accurate object tracking by extracting features by
reconstructing the candidate group within the focal stack at frame t, focusing on the focal
plane with the highest similarity to the target object template at frame t − 1.

3.3. Dynamic Focal Range Adjustment

In order to perform robust tracking, features are extracted from the reconstructed focal stack
in t-th frame, with the focal plane having the maximum similarity between the target object
template and the focal plane in frame t − 1. As stated in (2), by setting the focal range r, the
search range is composed in the range of −r to +r based on k̂t−1-th focal plane where an object
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was tracked in the previous frame. Here, the default focal range r in this paper was empirically
set to 5, It means that the object was tracked over a total of 11 focal planes for each frame.

However, when the search region is maintained to an unchangeable range, there is a
limit in object tracking due to the restricted small focal range when object movement along
the depth direction changes rapidly. Also, when the focal range is wider than necessary
might result in the tracker being capable of detecting irrelevant features and missing weak
target feature variation. Additionally, if the target object is occluded by the search occluder
and reappears in the next frame, accurate search is difficult because it still refers only to the
location at the time of disappearance, that is, specific focal planes. Therefore, by increasing
the focus range, you can respond to objects wherever they appear.

Therefore, the focal range adjustment is required based on the estimated similarity
between feature maps dynamically as shown in Figure 5. The excessively wide or small
search range of the focal plane decreases the performance in plenoptic object tracking;
thus, the level of range r is adjusted according to the similarity score s. The details were
empirically set as shown in Table 1. The proposed dynamic adjustment of the focus range
according to similarity aims for more accurate tracking and ensures robustness in object
tracking. However, if the similarity score continues to be below a certain level, the object is
judged to have been missed and the focal plane search area is quickly expanded. It is also
an expansion technique.

Figure 5. Illustration of dynamic focal range adjustment scheme based on the degree of similarity score.

In this study, we experimentally added a search area initialization algorithm that
expands the search area r to 30 when the similarity value over 3 frames is 0.5 or less.

Table 1. Focal range settings based on similarity score.

Similarity Score Focal Range r

s > 0.8 3
0.8 ≥ s ≥ 0.2 5

0.2 > s 7

Here, we add a search range initialization step that expands the range r to 30 when
the similarity score is less than 0.5 for three or more frames in sequence.

3.4. Anchor Ensemble

In general, similar to SiamRPN++, which is employed for our baseline tracker, tracking
algorithms including RPN require heuristic tuning for several hyperparameters of anchors
such as default bounding boxes and scales [14]. When detecting the highest similarity
with the target object, the possibility of error is low because only the spatial region is
covered. However, the region is expanded to the spatial region times focal planes in the
plenoptic sequence. In a plenoptic sequence, the max(·) operation is computed on predicted
bounding boxes of each focal plane, and then the max(·) operation is calculated again for as
many focal planes as the number of focal planes. Here, the max(·) voting is repeated, and
errors accumulate due to increased the number of combinations. Figure 6a illustrates the
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problem of the existing method, as the max(·) operation between the predicted bounding
boxes of the maximum similarity anchors selected for each focal plane is performed again
in all focal regions; errors caused by the max(·) operation accumulate.

Figure 6. Anchor ensemble technique through mean(·) operation. (a) When the predicted bounding
box having maximum similarity is separately far from the other anchor predictions in one focal plane,
the max(·) operation on all focal planes leads accumulation of errors. (b) Since multiple focal planes
are adopted for inference, by utilizing the mean(·) operation instead of max(·) depending on the
similarity score in a focal plane, the predicted box coordinates are compensated.

To prevent such kind of error accumulation, as shown in (b), a method of ensemble
predictions of anchor bounding boxes through mean(·) operation is devised. If the maximum
similarity in one focal plane is 0.7 or higher, the object is tracked by max(·) operation on anchor
prediction results as before (i.e., five anchors in the proposed baseline tracker). Whereas, in
the case of a similarity score less than 0.7, a method was adopted to limit the change so that
the change is not large by performing the mean(·) operation on the coordinate values of the
inference result of the bounding box derived from the other anchors.

3.5. Dynamic Change of Spatial Search Region

In SiamRPN++, the spatial searching used an algorithm that restricts region by crop-
ping and resizing in the next t-th frame centered on the (x, y) coordinates of the tracked
object in the t − 1th frame. This assumption was based on the fact that the position of an
object in the current frame is not significantly different from its position in the previous
frame. Here, the crop-resize ratio was set as a hyperparameter based on the tracking
coordinates of the previous frame [13]. However, when moving an object, the bounding
box and spatial search range became excessively large or small depending on the size of
the target object due to that heuristic ratio. As a result of tracking, the size of the bounding



Electronics 2024, 13, 590 9 of 18

box also continued to grow smaller or larger, consequently resulting in tracking failure. We
observed that such a phenomenon has occurred frequently.

To resolve this problem, we utilized an additional approach to dynamically change the
spatial search area, just as recent research has utilized dynamic neural networks to increase
accuracy and computational efficiency [22], as shown in Figure 7. We set the criterion for
expanding the spatial area to be searched to whether a similarity of 0.5 or less lasts for
more than 3 frames. When this criterion is met, the spatial search area is increased by a
single pixel. Empirically, when the increment is designated as larger than a single pixel, the
predicted box area that is inferred thereafter tends to decrease since the target size gradually
decreases relative to the search area. Hereby, more stable object tracking regarding spatial
search is possible with the introduction of this algorithm.

Figure 7. Dynamic change of spatial search region according to similarity score, which prevents an
excessive change of search region for the next prediction.

4. Scheduling for Faster Plenoptic MOT
4.1. Plenoptic MOT via Baseline Tracker Parallelization

As explained in Section 2, we aim to apply the baseline plenoptic tracker to multiple
user-specified objects by creating tracker instances for each target as shown in Figure 8.
At this time, if the feature extraction backbones are shared between trackers, the feature
maps of each tracker will affect the prediction of other trackers, leading to unintended
results. Therefore, in this paper, a deep copy is used to allow the properties of each tracker
to be instantiated without sharing memory despite a bit higher resource consumption.
This enables independent tracking of multiple objects without interference, relying on the
baseline tracker’s performance, and exhibiting linearly increasing time consumption with
the number of targets.

Figure 8. Naïve scheduling for MOT based on utilizing the multiple baseline trackers.
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4.2. Fair-Time Scheduling

The parallelization of MOT provides strong tracking performance, but the computa-
tional complexity is high because there are as many baseline trackers as there are objects
and they operate simultaneously. The basic method for improving speed in MOT is to split
the work evenly as depicted in Figure 9. Here, individual trackers are assigned to objects,
with only one tracker operating per frame, while others wait for their turn. If there are N
trackers, tracking is performed once per N frames, which results in a speed improvement
of N times compared to a situation in which all trackers are operating.

Figure 9. Fair-time scheduling technique for MOT which boosts speed by tracking only a single target
per frame, but whose performance is in inverse proportion to the number of targets.

However, the fair-time scheduling technique is based on the assumption that there is
only a single target object per frame and that the movement speed of each target object is
stationary, which is an unrealistic scenario. Additionally, if there are many objects to be
tracked, the number of skipped frames increases, and the tracking success rate becomes
inversely proportional to the number of target objects.

4.3. Motion Adaptive Time Scheduling

To reduce computational complexity in object tracking and increase speed while
maintaining accuracy, this paper introduces a motion adaptive time scheduling method
that assigns trackers to multiple objects based on motion speed. This approach is inspired
by the existing method, which dynamically skips less important frames and then quickly
selects valuable regions from the remaining frames [23].

When the moving direction of each object changes, a tracker is applied to prevent
tracking in the wrong direction. If object tracking is in progress in the same direction as
the current moving direction, it can be viewed as a form of skipping, such as fair-time
scheduling. Since there is an assumption that no sudden rapid change in speed occurs,
tracking for that frame can be skipped. The direction of movement here can be known
based on the amount of change in speed. In Figure 10, a conceptual diagram for motion
adaptive time scheduling that skips the tracking of a certain object among a plurality of
target objects based on the moving speed is visualized.
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Figure 10. Motion adaptive time scheduling in multi-object tracking.

Figure 11 visualizes the criteria for skipping the tracking of a specific target. The
main idea is that if the target movement varies dynamically, the corresponding tracker
continuously tracks the target as depicted in (a). On the other hand, if the motion of a target
is small enough, the corresponding tracker does not track its target in that frame as shown
in (b). Towards this, at first, each tracker in a frame calculates the central distance of n-th
object coordinates between frames:

mn
t =

√(
xn

t−1−η − xn
t

)2
+

(
yn

t−1−η − yn
t

)2
, (3)

where η and mn
t−η represent a skipped frame number increment (default η = 0) and motion

speed, respectively. Let mn
t−2 and mn

t−1 be the distances between the center coordinate of
the previous second frame and the center coordinate of the previous frame, and between
the center coordinate of the previous frame and the center coordinate of the current t-th
frame, then the differential motion speed can be calculated:

∆mn
t = mn

t−2 − mn
t−1. (4)

Based on (4), the n-th object in the corresponding frame On
t is skipped being tracked

when the differential motion speed of a specific object below a certain level γ and the
similarity score in the previous frame sn

t−1 exceeds 0.5:{
On

t /∈ Ωt |∆mn
t | ≤ γ, and sn

t−1 > 0.5
On

t ∈ Ωt otherwise,
(5)

where Ωt represents the set of targets at t-th frame. Here, we set γ to 5% of the frame
size [24]. When the n-th object tracking is skipped in the previous frame, the central
distance mn

t in (3) and the motion speed ∆mn
t in (4) are calculated with η incremented as the

number of skipped frames to determine whether the object is tracked or not in the current
frame as shown in (b). Additionally, when On

t is skipped by two consecutive frames, the
spatial search region is expanded by 30 pixels to minimize tracking errors.
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(a)

(b)

Figure 11. Criterion to adaptively skip certain object tracking based on motion. (a) Visualize cases
where the motion speed of an n-th object exceeds a certain level of γ, where the corresponding tracker
keeps track of the target. (b) Visualize cases where the motion speed of an n-th object is below a
certain level of γ, where the corresponding tracker determines to ignore the tracking target.

5. Experiments
5.1. Plenoptic Video Sample

To evaluate the performance of the proposed scheme, the NV1 sequence is used which
is an unstructured plenoptic video taken by 16 UHD cameras with parallax at an arbitrary
position and is composed of a focal stack including 101 focal planes per frame. Since the
plenoptic sequence used for MOT in this experiment is not a public dataset and there is
no ground truth (i.e., target bounding boxes) for evaluating the accuracy, four subjects
manually annotated it.

5.2. Performance Metrics

In this paper, the performance of MOT is calculated through bounding boxes drawn
around the target objects to be tracked. The first used metric is the central distance [25],
which is measured Euclidean distance based on the coordinates of the centers of the two
bounding boxes, ground truth, and prediction. That is, object tracking error is expressed as
a distance in pixels, and success or failure is determined by calculating whether an error
exists within a specific distance criterion compared to the size of the entire scene. The
second utilized metric is intersection over union (IoU), which is an indicator that considers
not only the center coordinates (x, y) but also the width and height (w, h) of the bounding
box. It is calculated by dividing the overlapping area of the two bounding boxes by the
area of the sum of the widths of the bounding boxes derived as a result of tracking the
plenoptic object. Generally, in object tracking competitions such as VOT challenges, the
object tracking success rate is judged based on IoU 50% [26].

5.3. Performance Evaluation on Plenoptic VOT

At first, we verified the performance of plenoptic VOT (i.e., tracking a single target). Exper-
iments were performed in an ablation study manner; thus, the results show the improvement
level of plenoptic tracking following adding each proposed module. Additionally, to show
the superiority of our proposed method, the previous plenoptic VOT model introduced by
Bae et al. [25] was also compared. The results of evaluated central distance and IoU are shown
in Figure 12 and Table 2, and Figure 13 and Table 3, respectively.
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Table 2. Average centraldistance for different algorithms of VOT in plenoptic sequence NV1.

Algorithm Central Distance (Pixels)

2D tracking 118
Bae et al. [25] 358

A: Plenoptic tracker baseline 162
B: A + focal range restriction & adjustment 53

C: B + anchor mean ensemble 38
D: C + search region change 28

Figure 12. Central distance measure for different algorithms of VOT in plenoptic sequence NV1.

Table 3. Average IoU for different algorithms of VOT in plenoptic sequence NV1.

Algorithm IoU (%)

2D tracking 3
Bae et al. [25] 1

A: Plenoptic tracker baseline 24
B: A + focal range restriction & adjustment 41

C: B + anchor mean ensemble 55
D: C + search region change 72

Figure 13. IoU measure for different algorithms of SOT in plenoptic sequence NV1.

As can be seen from the results, the performance of the 2D tracker (i.e., SiamRPN++)
on the plenoptic sequence was notably low since the target object in NV1 is occluded at
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approximately the 100th frame and fails to track from then. What is noteworthy is that
the previous plenoptic tracking method showed poor performance on NV1, because the
focal regions selection by using sharpness metric did not work on the NV1 which contains
many edges in the scene. On the other hand, the proposed plenoptic baseline tracker (A
in Tables) showed that it can track the desired target to some extent, which is particularly
represented in the IoU score as tabulated in Table 3. Moreover, it can be shown that overall
performance significantly increased when the proposed schemes were embodied. The
plenoptic tracking using the focal range restriction and dynamic adjustment (B in Tables)
shows an improvement of about 17% over the plenoptic baseline tracker. When the anchor
ensemble (C in Tables) raised performance another 14%. Finally, when all of the proposed
schemes were applied, the model resulted in a total improvement of about 48% over the
plenoptic baseline tracker. As shown in Figures 12 and 13, the proposed plenoptic tracker
briefly missed the target at about 220th frame but immediately started to track it normally
differing from the other methods. The experimental results demonstrate that the proposed
method operates with higher reliability than the existing VOT for plenoptic sequences.

5.4. Performance Evaluation on Plenoptic MOT

For three target objects within the plenoptic sequence NV1, four different methods
were compared: MOT by the general 2D tracker (i.e., SiamRPN++), the proposed plenoptic
MOT baseline (naïve scheduling), MOT with fair-time scheduling, and MOT with the
motion adaptive time scheduling. In Figures 14–16 and Tables 4–6, the tracking perfor-
mances on the unstructured plenoptic sequence NV1 are quantitatively shown using central
distance, IoU, and tracking speed, respectively.

Table 4. Average central distance for different algorithms of MOT in plenoptic sequence NV1.

Algorithm Central Distance (Pixels)

2D tracking 570
Plenoptic MOT baseline (naïve scheduling) 66

Fair-time scheduling 78
Motion adaptive time scheduling 60

As shown in Figure 14 and Table 4, the general tracker failed to track after an occlusion
occurred (∼100th frame), and the central distance was constantly increased due to the
accumulation of errors. Differing from the 2D scenario, the other plenoptic MOT algorithms
showed they were able to achieve stable tracking performance in spite of occlusion. Similar
to central distance results, as shown in Figure 15 and Table 5, IoU represents the matching
ratio between the ground truth and predicted bounding box; thus, the higher the % value is
the higher the tracking performance. In the case of the plenoptic MOT baseline algorithm,
which performed tracking for three objects in each frame, it showed the best performance
with 77% IoU, but the object tracking speed was the lowest as shown in Figure 16 and
Table 6. When using the fair-time scheduling technique, there was a speed improvement of
about three times (i.e., similar to the number of target objects), but the tracking performance
decreased to 51%. When using the motion adaptive scheduling based on motion speed, the
overall tracking speed was improved by approximately 18% compared to the naïve approach,
while the tracking performance was relatively lower but acceptable. Note that the reason why
the latency at the first frame is that it needs to set up a buffer to store past movements.

Table 5. Average IoU for different algorithms of MOT in plenoptic sequence NV1.

Algorithm IoU (%)

2D tracking 29
Plenoptic MOT baseline (naïve scheduling) 77

Fair-time scheduling 51
Motion adaptive time scheduling 68
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Figure 14. Central distance measure for different algorithms of MOT in plenoptic sequence NV1.

Figure 15. IoU measure for different algorithms of MOT in plenoptic sequence NV1.

Figure 16. Tracking speed measure for different algorithms of MOT in plenoptic sequence NV1.
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Table 6. Average speed for different algorithms of MOT in plenoptic sequence NV1.

Algorithm Sec/Frame

2D tracking 0.3
Plenoptic MOT baseline (naïve scheduling) 4.23

Fair-time scheduling 1.25
Motion adaptive time scheduling 3.45

The quantitative results demonstrated that the MOT models based on the proposed
plenoptic MOT baseline are able to cope with occlusion. Furthermore, although a trade off
between tracking performance and speed inevitably exists in a DFT manner, the results
showed that the proposed motion adaptive time scheduling algorithm achieved stable
performance while reducing computational complexity.

Figures 17 visualize the results of the proposed plenoptic MOT for each algorithm in
NV1. As shown in the qualitative results, it verified that tracking of objects with occlusion
fails in the case of using only 2D information in (a), whereas the proposed plenoptic MOT
algorithm performed successful tracking even when occlusion occurs as shown in (b).
When the fair-time scheduling technique is applied as shown in (c), there is an advantage
in tracking speed, but when occlusion occurs, a certain target object (e.g., foot) is missed.
Whereas, when the motion adaptive time scheduling was applied in (d), there was a
benefit in overall tracking speed, and reliable tracking was performed even when occlusion
occurred for all objects.

(a) (b)

(c) (d)

Figure 17. Results for each scheduling algorithm applied to Plenoptic MOT. The white boxes are
ground truths, and the colored boxes are predictions: (a) 2D tracker applied to the plenoptic sequence.
The tracking target fails due to occlusion. (b) Naïve parallelization. Object successfully tracked even
when the target is unseen, but requires heavy computation. (c) Fair-time scheduling. Advantage in
speed, but targets often missed during occlusion. (d) Motion adaptive scheduling. The target object
was successfully tracked even with occlusion with an advantage in speed.

6. Conclusions

In this work, the plenoptic MOT scheme in terms of DFT is proposed that can be
applied to arbitrary objects. The proposed method can track desired objects when they are
not within a predefined category and even if they are invisible to the occluder. To this end,
a robust baseline plenoptic tracker search over the focal stack is investigated, and focal
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range restriction and adjustment techniques to prevent false positives are introduced. In
addition to improving tracking performance regarding focal information, we developed
anchor pooling and search methods over spatial regions to correctly track the target. In
addition, through motion adaptive parallelization of the plenoptic tracker, the proposed
method enables high-speed, high-precision MOT for the plenoptic sequence having vast
information. As a result of applying the proposed techniques to MOT in unstructured
plenoptic videos, it quantitatively showed superior performance compared to existing
2D-oriented MOT and achieved robust results even when occlusion occurs.

The method proposed in this paper can be used as a software plug-in of a platform in
post-processing for plenoptic content creators, and producers since the desired modification
of manually targeted objects is available. Moreover, it is expected to be used as an additional
function for advertising or promoting products from a plenoptic video service provider
through MOT. We now investigate the complete post-processing solution, including video
inpainting, editing, or partial generation in conjunction with the tracked target.
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