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ABSTRACT Bridging distant space-time interactions is important for high-quality video inpainting with
large moving masks. Most existing technologies exploit patch similarities within the frames, or leaverage
large-scale training data to fill the hole along spatial and temporal dimensions. Recent works introduce
promissing Transformer architecture into deep video inpainting to escape from the dominanace of nearby
interactions and achieve superior performance than their baselines. However, such methods still struggle to
complete larger holes containing complicated scenes. To alleviate this issue, we first employ a fast Fourier
convolutions, which cover the frame-wide receptive field, for token representation. Then, the token passes
through the seperated spatio-temporal transformer to explicitly moel the long-range context relations and
simultaneously complete the missing regions in all input frames. By formulating video inpainting as a
directionless sequence-to-sequence prediction task, our model fills visually consistent content, even under
conditions such as large missing areas or complex geometries. Furthermore, our spatio-temporal transformer
iteratively fills the hole from the boundary enabling it to exploit rich contextual information. We validate
the superiority of the proposed model by using standard stationary masks and more realistic moving object
masks. Both qualitative and quantitative results show that our model compares favorably against the state-
of-the-art algorithms.

INDEX TERMS Video inpainting, video completion, free-form inpainting, object removal, adversarial
learning.

I. INTRODUCTION
Video inpainting is the process of intelligently filling missing
regions within a video frame, while maintaining spatial and
temporal coherence. This task holds great significance across
various real-world applications, encompassing restoration
(eliminating permanent defects like scratches and dust),
video re-touching (removing unwanted objects and water-
marks), and stabilization (mitigating fluctuated motion and
de-flickering). Nevertheless, achieving high-quality video
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inpainting remains a formidable challenge due to the absence
of effective long-range interactions within the space-time
domains.

Early patch-based video inpainting methods aimed to
address the task by replacing the masked region with the
most similar patch found elsewhere in the video [1], [2],
[3]. However, these methods were often time-consuming and
demonstrated limited capacity in synthesizing non-repetitive
and intricate regions. This limitation arises from the
assumption that there exists a hint for the missing portions
within the observable regions. More recently, learning-
based approaches have significantly elevated the performance
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of video inpainting. These methods employ techniques
like 3D convolutions and recurrent networks to improve
results [4], [5], [6]. By aggregating information from
neighboring frames, they endeavor to complete the gaps in the
video. Among these advances, attention-based modules have
proven highly effective, facilitating the transfer of long-range
relationships between visible and obscured regions in the
video [7], [8]. Despite these notable strides, the primary
challenge of video inpainting remains the need to establish
connections and effectively integrate visible information into
synthesized contexts, all while considering inter-frame and
intra-frame relationships.

In recent times, Transformers have gained significant
prominence, emerging as the de-facto standard architecture
for language-related tasks [9], [10], [11]. Notably, they have
begun to demonstrate comparable or even superior perfor-
mance to Convolutional Neural Networks (CNNs) across a
diverse array of vision benchmarks [12], [13]. In contrast
to CNN models, Transformers boast a robust representation
capability and are characterized by their freedom from
inductive biases. A key feature of Transformers is their ability
to facilitate long-term interactions through the incorporation
of dense attention mechanisms. This capacity has been
leveraged in preliminary research efforts to model structural
relationships in the context of natural image synthesis. This,
in turn, leads to the generation of natural outputs through the
optimization of underlying data distributions [14], [15], [16].

Motivated by the growing trend of employing transformer
architecture in computer vision tasks, we present a novel,
high-fidelity pluralistic video inpainting approach. In partic-
ular, our method treats video inpainting as a directionless
sequence-to-sequence prediction task, effectively capturing
both short- and long-term interactions through multi-head
self-attention mechanisms. However, as highlighted in recent
literature [17], [18], [19], transformers excel at capturing
long-range interactions among input tokens but are less adept
at capturing fine-grained local dependencies. Conversely,
convolutional layers are adept at capturing local details but
necessitate deeper layers to grasp the broader contextual
understanding. This duality underscores the distinct limita-
tions of transformers and CNNs.

In this study, we present a novel approach that lever-
ages the strengths of both transformer and convolutional
architectures. Our main insight is to harness the global
structural dependencies through transformer layers, while
using convolutional layers to enhance local texture contexts
based on these global structural insights. However, directly
applying transformer models to visual generation tasks poses
challenges. Unlike natural language processing (NLP), where
each word is treated as a vector for token embeddings,
determining suitable token representations for visual tasks
is less clear. Prior studies have resorted to considering
every pixel or non-overlapping patches (e.g. 16 × 16) as
token representations. Yet, due to high memory demands
associated with longer input sequences, these methods suffer
from resolution-related issues [20]. To address this concern,

we incorporate convolutional layers to efficiently learn the
compositional nature of masked video frames. Nonetheless,
we’ve observed that conventional convolutional architectures
may lack a sufficiently large receptive field for efficient token
representations [13], [14], [16]. To overcome this limitation,
we introduce a novel token representation approach based
on recently developed fast Fourier convolutions (FFC) [21],
[22]. This technique has a profound impact, allowing for
frame-wise receptive fields that cover entire frames even in
the initial layers of the network.

To address the computational complexity associated with
self-attention, which grows quadratically with the frame
length and becomes intractable for video transformers,
we propose a spatially and temporally separated transformer
backbone. This architecture aims to efficiently process a
large number of spatio-temporal tokens that arise in videos.
Specifically, we decouple the transformers across space-time
volumes, enabling the coherent search for tokens from all
frames and the simultaneous completion of all input frames.
This design enables the model to synthesize stationary back-
ground textures within intra-frames and subsequently refine
temporal consistency across inter-frames. We empirically
assess this approach across various scalable transformer
designs. Furthermore, to effectively complete intricate details
even within large hole samples, we introduce an iterative
refinement strategy. This involves gradually eroding the hole
while refining tokens. Our design iteratively deduces and
aggregates hole boundaries within the encoded feature map.
Consequently, our network can tap into richer contextual
information for the missing regions at each iteration.

Moreover, transformers are often considered ‘‘data-
hungry’’ models due to their inductive bias-free nature,
necessitating sufficiently large datasets for effective training.
However, video datasets are typically relatively small in
comparison. To address this challenge, we propose a strategy
to effectively train transformer models on smaller video
datasets by leveraging pre-trainingwith larger image datasets.
Our training approach harnesses a collection of static
images to pre-train the proposed network. An example result
depicting a successful content generation in a challenging
object removal scenario is illustrated in Figure 1. Through
an extensive series of experiments, we showcase that our
model surpasses existing state-of-the-art approaches by a
substantial margin in terms of metrics such as PSNR, SSIM,
and VFID. Furthermore, we substantiate the efficacy of
our proposed techniques through comprehensive ablation
studies. In summary, our contributions can be encapsulated
as follows.

1) We introduce a novel video inpainting network lever-
aging the advancements of Fast Fourier Convolutions
(FFCs). These FFCs not only facilitate the incorpo-
ration of context-rich token representations but also
contribute to refining local texture details, thereby sig-
nificantly enhancing the overall network performance.

2) We put forth an innovative interwoven spatial-temporal
transformer framework designed to proficiently
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FIGURE 1. We introduce a video inpainting network based on transformers with an iterative refinement mechanism. Our model aims to complete the
gray regions shown in the top row, and the synthesized frames are visualized in the bottom row (please zoom in for finer details).

capture global structural dependencies. This hierar-
chical transformer architecture empowers both intra-
and inter-frame tokens to seamlessly engage with
spatially and temporally coherent features, ultimately
facilitating the restoration of the underlying global
structure.

3) We present an iterative refinement module as part of
our proposed methodology, aimed at further enhancing
the accuracy of inpainting in deeper pixels of the holes.
This module progressively accumulates richer contex-
tual information for the regions with missing data at
each step, contributing to the overall improvement of
the inpainting results.

The structure of this article is as follows. Section II
provides an overview of related work, encompassing image
inpainting and video inpainting, in order to review the latest
algorithms in these domains. In Section III, we delve into
the comprehensive framework, outlining the background
of Fast Fourier Convolutions (FFCs), the significance of
Transformers, the architecture of our proposed model, and
the intricacies of the training process. Moving forward,
Section IV presents the database employed for performance
evaluation and details the experimental results obtained.
Finally, the paper concludes with a comprehensive summary
in Section V.

II. RELATED WORKS
A. IMAGE INPAINTING METHODS
Traditional methods for image inpainting can be broadly cat-
egorized into diffusion-based [23], [24], [25] and patch-based
approaches [26], [27], [28]. The former involves propagating
texture from known regions to unknown (missing) regions
and works well for small holes but tends to generate artifacts
and noisy outcomes for larger holes. The latter, on the other
hand, focuses on matching and copying nearest neighbor
background patches. More recently, many researchers have
turned to leveraging large image datasets for generating
semantically coherent content using learning-based methods.
Adversarial training, in particular, has been employed to
enhance the realism of inpainted images [29], [30], [31],
[32]. The concept of the context encoder was an early
endeavor in generating reasonable results through feature
learning [33]. Subsequent methods have aimed to enhance

the visual quality of inpainted images to handle free-form
masks, often adopting a two-stage refinement structure (such
as coarse-to-fine architectures involving edges and structures)
[34], [35], [36].

Building upon these foundations, numerous studies have
explored the utilization of attention layers to learn corre-
lations between background and foreground feature maps,
allowing for the borrowing of pixels from distant loca-
tions [22], [37]. In pursuit of further refinement, image
inpainting methods have embraced recursive hole-filling
schemes to address larger holes. These methods ensure a
confident region extending from the boundary to the center
within feature spaces [38]. Our work builds upon attention
and iterative refinement frameworks to tackle the challenges
posed by the video inpainting task.

B. VIDEO INPAINTING METHODS
Video inpainting not only inherits the challenges faced
by the image inpainting task but also introduces the
need for time-consistent content generation. Early video
inpainting methods often approached the space-time filling
process through patch-based optimization techniques [26],
[39], [40]. These methods completed holes by utilizing
3D patches in the spatio-temporal domain as synthesis
units. For instance, Huang et al. proposed a non-parametric
optimization approach that combined flow-field estimation
and flow-guided patch synthesis [2], [3], [41]. While these
methods yielded impressive outcomes, they often assumed
stationary motion fields within holes and were constrained by
dynamic camera motion, in addition to facing computational
challenges.

In recent years, numerous researchers have turned to large
datasets and deep learning models to generate plausible
content. Early attempts such as combining 2D and 3D CNNs
aimed to learn temporal and spatial features [6], although
often resulting in blurry results. Inspired by flow-based
methodologies [42], [43], [44], [45], Xu et al. explicitly
estimated both appearance and optical flow to aid in prop-
agating content from potentially distant frames. Kim et al.
introduced a recurrent network to aggregate temporal features
from nearby frames [5]. Chang et al. developed free-form
video inpainting with 3D gated convolutions and temporal
PatchGAN [4]. However, due to their limited ability to
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FIGURE 2. Overview of the Transformer-based Video Inpainting (TVI) architecture. TVI comprises separated spatial and temporal transformer
blocks along with an iterative refinement module. The initial step involves embedding multiple input frames with independent tokens, followed by
the concurrent hole-filling process through the transformer module to achieve globally coherent synthesis.

model long-range correspondences, these approaches often
struggled to capture visible content from distant frames.

To address these limitations, recent approaches have
embraced attention modules, showing promising perfor-
mance. Oh et al. progressively filled missing regions from
the boundary to the center with asymmetric attention to
calculate similarities between target and reference frames [8].
Zeng et al. proposed STTN, directly applying multi-head
self-attention to the video inpainting task, enabling the
simultaneous completion of input frames while considering
spatial-temporal similarity [46]. However, STTN introduced
substantial computational demands. Specifically, applying a
single multi-head attention layer to images with a resolution
of 128×128 and 8 batches required more than 32GB of mem-
ory, which is generally impractical. Drawing inspiration from
STTN, Liu et al. introduced DSTT, disentangling spatial and
temporal learning tasks into two sub-tasks [47]. In contrast to
the approach of DSTT, ourmethod iteratively fills themissing
hole in the feature domain, extracting continent tokens from
each frame with smaller dimensions to propagate long-range
interactions across space-time regions. Moreover, we take a
step further in presenting an efficient training methodology
for the data-hungry transformer architecture.

C. LIMITATIONS AND ADVANTAGES
Existing video inpainting methods exhibit varying limitations
and advantages. The limitations often include sensitivity
to certain types of scenes, computational inefficiency, and
challenges in handling real-time processing. On the other
hand, advantages may include superior performance in
specific scenarios, efficient handling of dynamic content,
or innovative approaches to addressing inpainting challenges.
Our proposed method, detailed in this paper, leverages

TABLE 1. Comparison of existing articles in video inpainting.

Fourier Frame Convolution, Spatial and Temporal Trans-
formers, and an Iterative Refinement process.

In summary, the field of video inpainting continues to
evolve, with researchers exploring innovative techniques and
applications. The comparison in Table 1 provides a snapshot
of the diverse landscape of video inpaintingmethods and their
respective strengths and weaknesses.

III. METHODS
A. OVERVIEW
1) PROBLEM FORMULATION
Let XT1 = {X1,X2, . . . ,XT } represent a set of corrupted
video frames with a sequence length T , and MT

1 =

{M1,M2, . . . ,MT } be the corresponding frame-wise masks.
Our objective is to learn a mapping function G that generates
reasonable video output. This can be expressed as G : XT1 →
Ŷ T1 , where Ŷ

T
1 = {Ŷ1, Ŷ2, . . . , ŶT } represents the predicted

video frames. These predictions aim to closely approximate
the target video frames Y T1 = {Y1,Y2, . . . ,YT }.
To achieve this, we cast video inpainting as a multi-input

and multi-output generative task. In this task, we aim
to estimate the conditional distribution p(Y T1 |X

T
1 ). Our
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motivation stems from the observation that a missing region
in a current frame could potentially be revealed in both nearby
and distant frames. For instance, if a mask is moving quickly,
themissing regionmight be recoverable from adjacent frames
by borrowing texture information. Conversely, when a mask
is large and moving slowly, the occluded region could be
visible in a distant frame.

In our approach, we leverage both adjacent and distant
frames as conditions to simultaneously fill in the missing
input frames. We adopt the Markov assumption [5], [46],
which allows us to factorize the multiple conditional inputs
and corresponding multiple outputs as a product form.
Mathematically, this can be represented as:

p(Ŷ T1 |X
T
1 ) =

T∏
t=1

p
(
Ŷ t+TRt |X t+TRt ,XT1,s

)
,

Here, X t+TRt represents the adjacent frames, and XT1,s rep-
resents the distant frames. The distant frames are uniformly
sampled from the total frames XT1 with a sampling rate of s,
following the approach in prior studies [46].

2) NETWORK DESIGN
In order to achieve spatially and temporally consistent content
inpainting, we introduce a novel inference model termed
**TVI** that utilizes a **T**ransformer-based **V**ideo
**I**npainting architecture. An overview of our video
inpainting framework is depicted in Figure 2. The TVI
architecture is composed of a frame-level encoder-decoder
and a cascaded spatial-temporal transformer.

The frame-level encoder is designed to capture the
low-level structural information of the video frames.
To achieve this, we leverage the **Fast Fourier Convolutions
(FFCs)**, which allow efficient modeling of token repre-
sentations while considering the entire frame-wide receptive
field. Similarly, the frame-level decoder is responsible for
transforming the encoded features back into the spatial
domain, effectively completing the missing content.

The pivotal component of our architecture is the cascaded
spatial-temporal transformer. This module is crucial for
capturing long-range interactions across frames, enabling the
restoration of global contextual information. To reinforce the
spatial-temporal constraints and improve the overall quality
of predictions, we introduce a plug-and-play recurrent feature
reasoning process. This process facilitates the prediction of
each global structure by iteratively inferring and accumulat-
ing hole boundaries within the encoded feature map.

By progressively strengthening the constraints governing
spatial-temporal content, our proposed TVI model generates
semantically coherent results that reflect the underlying
context of the input video frames.

B. FAST FOURIER CONVOLUTION
1) BACKGROUND
Traditional fully convolutional models often struggle to
achieve a large receptive field using small convolutional

kernels (e.g., 3 × 3), leading to a need for deep networks
with substantial memory demands. This limitation becomes
particularly evident in video inpainting tasks involving
large moving masks, where generators with insufficient
receptive fields tend to observe only the neighboring missing
pixels. Consequently, maintaining visually coherent contexts
becomes challenging.

To address these limitations, we adopt the Fast Fourier
Convolutions (FFCs) approach introduced in [21]. FFC
provides an effective solution by leveraging local and
non-local receptive fields in a single unit. The core idea of
FFC is rooted in the channel-wise Fast Fourier Transform
(FFT) [48], which significantly enlarges the image-wide
receptive field, ensuring the consideration of global context
for all layers.

FFC comprises two interconnected branches: a spatial (or
local) branch that employs conventional convolutions on a
portion of input feature channels, and a spectral (or global)
branch that operates in the spectral domain using Real FFT
to capture global context. These branches work in parallel,
each with a different receptive field, allowing simultaneous
acquisition of local and global information. The aggregation
of features between these branches is performed internally
within the FFC unit.

Formally, given an input feature volume X ∈ RH×W×C ,
where H , W , and C denote spatial resolution, the two
branches are obtained by splitting the dimension along the
channel axis, resulting in local and global features denoted
as X = {Xl,Xg}. The local feature Xl , with dimensions
RH×W×(1−αin)C , focuses on learning local details using
conventional convolution operations. On the other hand, the
global feature Xg, with dimensions RH×W×αinC , captures
global context by transforming the spatial domain into the
spectral domain using Real FFT. The parameter αin controls
the percentage of feature channels allocated to the global
branch, varying between 0 and 1. The output features of the
local and global branches are then aggregated to form the final
feature volume Y = {Yl,Yg}.
The FFC unit’s internal operations can be expressed

through equations:

Yl = Yl→l + Yg→l = fl(Xl)+ fg→l(Xg) (1)

Yg = Yg→g + Yl→g = fg(Xg)+ fl→g(Xl), (2)

where fl , fg→l , and fl→g represent convolution operations
with 3 × 3 kernel shapes, with fl→g reflecting the spectral
transformation. This FFC architectural design, illustrated
in Figure 3, closely follows the LaMa framework [22],
employing a single Fourier unit.

2) FFC-BASED ENCODER
To harness the potent expressive capabilities of transformers
for synthesis, we face the challenge of effectively rep-
resenting each fixed-size frame (432 × 245 × 3) as an
independent token. However, treating individual pixels as
tokens for training the transformer becomes infeasible due to
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FIGURE 3. Illustration of Fast Fourier Convolution (FFC). The token
representation is based on FFC which ensures a large receptive field and
can avoid meaningless operation on the large hole regions. ‘‘⊕’’ denotes
element-sise sum.

the substantial increase in sequence length (298, 080 tokens
for each frame). In order to make it possible to input
masked frames XT1 into the transformer with manageable
sequence lengths, we draw inspiration from ideas in neural
discrete representation learning [14], [16] and integrate the
representation abilities of Fast Fourier Convolutions (FFCs).

Specifically, we design the frame-level encoder by stacking
multiple FFC layers with down-sampling. This architecture
aims to capture both global context and local details from
early layers, which is essential for creating a compact token
representation. Following this, we obtain spatial features
along the temporal index TR, resulting in a size of H ×W ×
C × TR. These spatial features are then flattened for each
frame, yielding 1D sequences of size (HW ×C)× TR. In our
implementation, we setH ,W ,C , and TR to 30, 54, 512, and 4,
respectively. The effectiveness of our approach is empirically
demonstrated in both quantitative and qualitative evaluations
in Section IV-D.
*Note: Please replace ‘‘Section IV-D’’ with the correct

reference to the relevant section in your article.*

3) FFC-BASED DECODER
Following token representation, the acquired tokens are
input into a novel transformer architecture designed for
comprehensive information aggregation. These processed
tokens are subsequently translated to target frames via a
frame-level decoder. To ensure the synthesis of photorealistic
content through gradual up-sampling, we opt for Fast Fourier
Convolution (FFC) layers as our frame-level decoder, which
employs groups of dilated convolutions [29]. Notably, due to
their ability to cover the entire imagewith an expansive recep-
tive field, FFCs outperform recent CNN-based architectures
in terms of performance.

C. CASCADED SPATIAL AND TEMPORAL TRANSFORMER
1) BACKGROUND
We adopt the transformer encoder architecture proposed by
Dosovitskiy et al. [13] as our fundamental building block.
Here, we provide a brief overview of the transformer’s func-
tionality. The primary operation carried out in this layer is

self-attention, which is computed over a sequence of tokens.
As illustrated in Figure 2 (right), the transformer encoder
comprises alternating layers of multi-head self-attention
(MSA), responsible for capturing long-range dependencies,
and multi-layer perceptron (MLP) blocks with GELU non-
linearity. Layer normalization (LN) is applied before both
components, and each block employs a residual connection.
These operations are represented as follows:

z0 =
[
x1; x2; . . . ; xM

]
+ Epos, (3)

z′l =MSA
(
LN

(
zl−1

))
+ zl−1, (4)

zl =MLP
(
LN

(
z′l

))
+ z′l, (5)

where z ∈ RM×C represents the 1D sequence of M tokens x
with C dimensions, and Epos ∈ RM×C denotes the position
embeddings.

2) TRANSFORMER FOR SPATIO-TEMPORAL INTERACTION
We introduce a transformer-based architecture to capture
coherent contents by processing all the represented tokens.
As depicted in Figure 2, our model comprises three
distinct transformer encoders in sequence. Similar to the
design of BERT [49], the spatial transformer encoder takes
token embeddings as inputs and computes the relationships
between each token of the same temporal index. The
representation for each temporal index is denoted as xms ∈
RHW×C , where m = 1, 2, . . . ,TR.
To account for temporal relationships, the tokens from

the spatial transformer encoder are reshaped along the
temporal dimension, HW × C × TR → (HWTR) × C .
However, this leads to a significant increase in sequence
length with the growing number of input frames TR,
resulting in computational complexity. To address this issue,
we incorporate down-scaling and up-scaling layers before
and after the temporal transformer encoder. Specifically,
the down-scaling layer reshapes the 1D sequence of token
embeddings into a 2D feature map xms ∈ RH×W×C and
applies stacked convolutions with a down-sampling module
xms ↓∈ RH/2×W/2×C . Subsequently, the 2D feature map
is reshaped back into a 1D sequence of embedding tokens,
yielding xt ∈ R(H2

W
2 TR)×C . The temporal transformer

encoder then processes the temporally grouped tokens xt
and computes relationships between each token recursively.
Similarly, the up-scaling layer is designed to reshape the
temporally computed tokens back to the dimensions of
(HW × C) × TR. Finally, the spatial transformer encoder
is employed once more to further enhance the quality of
synthesis.

3) INFERENCE VIA ITERATIVE REFINEMENT
To further enhance the quality of our model’s output,
we introduce an iterative refinement process within the
transformer block, gradually improving the internal content.
Differing from existing iterative techniques [8], our proposed
model performs this refinement within the encoded feature
space. This approach not only makes efficient use of
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FIGURE 4. Illustration of the iterative refinement procedure. The area
identification process is performed by partial convolution and the hole
region gradually decreases during several times reasoning (blue arrows).
After iterative refinements, collected feature maps are adaptively merged
considering the valid region of the mask.

parameters, resulting in a lighter model, but also ensures
superior performance.

In each iteration, a partial convolution [50] is employed
as a fundamental module to determine the area that needs
updating. This operation updates the mask and renormalizes
the feature map post convolution calculation. LetW represent
the convolutional kernel and b be the corresponding bias. The
feature map x∗ obtained from the partial convolution layer is
given by:

x∗ =

WT (
x⊙m

) if sum(1)
sum(m)

+ b, sum(m) > 0

0, otherwise
(6)

where x and m represent the feature values for the current
convolution window and the corresponding binary mask,
respectively. Similarly, the updated mask value can be
expressed as:

m∗ =

{
1, if sum(m) > 0
0. otherwise

(7)

By employing these equations, new masks are generated
in which the holes become progressively smaller with each
partial convolution layer.

Following multiple refinement iterations within the trans-
former, intermediate features are merged to prevent gradient
vanishing issues, as discussed in prior works [38]. Instead of
directly passing the last features to the decoder, we employ
an adaptive merging approach that normalizes the value
across the newly completed regions [38]. Let zm,n denote the
features from the nth iteration, calculated along the temporal
index m = 1, 2, . . . ,TR. The value within the refined feature
map ẑm,n is defined as:

ẑm =
N∑
n=1

zm,n

m∗m,n
, (8)

where N represents the number of iterations. This approach
enables the model to merge an arbitrary number of feature
maps, ensuring the potential quality of synthesis. The details
of the iterative refinement pipeline of our module are
illustrated in Figure 4.

FIGURE 5. Examples of cropped images (right) from the high-resolution
image (left). Cropped images imitate small to large motions.

D. TRAINING
1) LOSS FUNCTION
The loss function is formulated to address pixel-wise
reconstruction accuracy, perceptual similarity, and temporal
consistency. This involves minimizing the L1 distance
between the generated and ground-truth frames to ensure
pixel-wise reconstruction. The pixel loss components are
defined as follows:

Lhole =
∥∥∥(1−MT

1 )⊙
(
Ŷ T1 − Y

T
1

)∥∥∥ , (9)

Lvalid =
∥∥∥MT

1 ⊙
(
Ŷ T1 − Y

T
1

)∥∥∥ . (10)

Additionally, we incorporate the Structural Similarity Index
Measure (SSIM), a perceptually motivated loss [51]:

LSSIM =
T∑
t=1

SSIM
(
Ŷt ,Yt

)
. (11)

To maintain temporal consistency, we adopt a Temporal
Patch GAN as our discriminator [46]. We maintain the
discriminator architecture and loss function as originally
defined. This adversarial loss contributes to generating
plausible and coherent results in video inpainting. The
optimization function for the discriminator is as follows:

LD = Ex∼PYT1
(x)

[
ReLU

(
1− D(x)

)]
+ Ex∼PŶ T1

(x)
[
ReLU

(
1+ D(x)

)]
. (12)

Subsequently, the corresponding adversarial loss for the
Transformer-based Video Inpainting (TVI) is defined as
follows:

Ladv = −Ez∼PŶ T1
[
D(z)

]
. (13)

Finally, the comprehensive loss function is expressed as
follows:

L=λhole · Lhole+λvalid ·Lvalid+λSSIM ·LSSIM+λadvLadv,
(14)

where hyperparameters are determined empirically (for
instance, λhole, λhole, and λhole are all set to 1, and λadv is
set to 0.1).
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Algorithm 1 Training of Our Proposed Network
Inputs : X1:T : {X1, . . . ,XT }, Corrupted frames;

M1:T : {M1, . . . ,MT }, Frame-wise masks;
Outputs: Ŷ1:T : {Ŷ1, . . . , ŶT }, Outputs of the TVI;

1 initialization;
2 x1:T ← FFC Encoder(XT1 ,MT

1 );
3 z1:T ← PositionalEncoding(xT1 );
4 m1:T ← DownSampling(M1:T );
5 i← 0;
6 while i smaller than N do
7 zi+11:T ,mi+1

1:T ← PartialConv(zi1:T ,mi
1:T );

8 zi+11:T ← SpatialTemporalTransformer(zi+11:T );
9 FeatureGroup← FeatureGroup+ {zi+11:T };
10 i← i+ 1;
11 end
12 xmerged1:T ← FeatureMerge(FeatureGroup);
13 Ŷ1:T ← FFCDecoder(xmerged1:T );
14 Updating the TVI with loss L;

2) PRE-TRAINING FROM IMAGE DATASET
Transformer-based architectures are often considered ‘‘data-
hungry,’’ implying their effectiveness when abundant training
data is available. Nonetheless, video datasets are relatively
small compared to images, making our model susceptible
to biases due to the limited training samples. To mitigate
this concern, our training approach incorporates a collection
of static images to pre-train the Transformer-based Video
Inpainting (TVI) model.

Specifically, we utilize extensive high-resolution image
datasets like Places2 [52] for training. In this process, we crop
a single image while considering motion components.
Drawing inspiration from optical flow methods [53], which
assume smooth motion transitions in real-world videos,
we simulate motion from a static image as follows:

cm+1x = cmx + w ·1x,

cm+1y = cmy + h ·1y, (15)

Here, (cmx , c
m
y ) denotes the center point of cropped images,

while w and h represent width and height, respectively.
The variables 1x and 1y are random samples from a
zero-centered normal distribution, serving to capture posi-
tional changes. Figure 5 illustrates examples of the cropped
images used for our pre-training strategy.

E. IMPLEMENTATION DETAILS
Our FFC-based encoder and decoder layers draw inspiration
from the ResNet architecture [54], where the CNN layers in
the residual block are substituted with FFC layers. In our TVI
model, we employ 3 downsampling blocks and 3 upsampling
blocks. Our transformer model follows the ViT architecture,
with the capacity being primarily adjusted by varying the
number of stacked layers. We quantitatively discuss the
transformer’s capacity in Section IV-D. As our discriminator,

we select the Temporal PatchGAN (T-PatchGAN) [4], com-
prising six layers of 3D convolutional layers. This module
serves to classify whether each spatial and temporal feature
is real or fake, similar to the standard GAN framework.
This adversarial trainingmechanism encourages TVI to focus
on spatial details and the temporal coherence of actual
videos [4], [55]. Additionally, we manually set the recurrence
number N to 8 for the transformer module to simplify
training. The network’s operational procedure is outlined in
Algorithm 1.

Throughout the experiments, frames with a resolution of
432 × 240 are utilized for training the proposed model.
The color values of all frames are linearly scaled to the
range [−1, 1]. Prior to the training process, we initialize all
network weights using the normalized distribution N (0, 1).
Optimization is carried out using the Adam optimizer [56],
with (β1, β2) = (0.0, 0.99) applied to both TVI and the
discriminator. We set the learning rate to a fixed value of
λ = 1e−4. To enhance model stability, we employ spectral
normalization (SN) [57], which scales down weight matrices
with their largest singular values. Our model is trained using
a batch size of at least 2, leveraging a GPU with 128GB
VRAM. However, we typically conduct training across more
than 8 GPUs, accumulating VRAM up to 96GB. If hardware
capabilities permit, 16-bit precision training is employed.

IV. EXPERIMENTS
In this section, we commence by introducing the datasets
employed for validating the model, followed by an explana-
tion of the training particulars for each dataset to ensure result
reproducibility. We subsequently conduct a comprehensive
evaluation of our approach, featuring both quantitative and
qualitative analyses. These analyses encompass comparisons
with recent video inpainting methods, alongside a user study.
Furthermore, we carry out ablation experiments to assess
the impact of various baseline components and present
supplementary results.

A. DATASETS
Our comparative analysis encompasses two widely employed
datasets extensively used in video inpainting research:
Youtube-VOS [59] and DAVIS [60]. The Youtube-VOS
dataset comprises 4, 453 videos spanning diverse scenes. The
dataset is partitioned into train/validation/test subsets, with a
distribution of 3, 471, 474, and 508 videos respectively. For
the Youtube-VOS dataset, we adhere to the original dataset
split and present experimental findings on the designated
test set. The average video length within the Youtube-VOS
dataset is approximately 150 frames. On the other hand,
the DAVIS dataset encompasses 150 high-quality videos
featuring dynamic camera and foreground motions. In accor-
dance with established evaluation practices [43], we use
60 sequences for training and 90 sequences for testing.

Furthermore, to address the data-hungry nature of
our model, we incorporate the high-resolution Places2
dataset [52] for pre-training. This dataset, tailored for
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TABLE 2. Quantitative comparisons on two datasets using object mask, curve mask, and stationary mask. The best measures are in bold. † Lower value is
better. ∗ Higher value is better.

FIGURE 6. Qualitative comparisons of our methods with OPN [8], STTN [46], and FGT [58]. Our model generates globally coherent content than other
benchmarks.

natural synthesis tasks, serves to imbue the model with
prior knowledge through an inductive bias-free design.
Additionally, we simulate real-world application scenarios
by utilizing previously introduced image corruption meth-
ods [61]. Specifically, we apply three types of free-form
masks: moving object-like masks, moving curve masks, and
stationary masks.

It’s noteworthy that our training strategies are slightly
adapted based on the specific datasets. Given the limited size
of the training video datasets, we initiate the training process
using the high-resolution Places2 dataset. In this phase,
we solely train the generator with the appearance loss term for
300 epochs. Subsequently, we incorporate the discriminator

with adversarial loss to fine-tune the TVI model on both
the Youtube-VOS and DAVIS datasets. The fine-tuning stage
encompasses an additional 200 epochs.

B. BASELINES AND EVALUATION METRICS
Our evaluation includes a comparison between our proposed
model and four existing deep-learning based video inpainting
methods, namely OPN [8], CPN [7], FGVC [43], STTN [46],
and FGT [58]. To ensure a fair assessment, we retrain
these baseline models until convergence following the
experimental settings detailed in each respective study. Below
are the details of the compared baselines:
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TABLE 3. User study and model efficiency on different methods. B is
short of Billion.

• OPN: This model employs iterative refinement and
incorporates attention modules in intermediate layers.

• CPN: CPN can compute affine matrices by fusing
reference frame features based on image similarity.

• FGVC: FGVC addresses the limitations of existing
flow-based video completion algorithms by utilizing
flow-edge, non-local flow, and seamless blending mod-
ules.

• STTN: STTN learns joint spatial and temporal attention
modules through multi-scale patch-based video frame
representations.

• FGT: FGT leverage the motion discrepancy exposed
by optical flows to instruct the attention retrieval in
transformer for high fidelity video inpainting.

Quantitative comparisons are conducted using peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM), and
Video Fr’echet Inception Distance (VFID) [62]. While PSNR
and SSIM assume pixel-wise independence, potentially
favoring perceptually suboptimal results, VFID offers a more
reliable perceptual evaluation. VFID calculates the distance
between features using a pre-trained I3D model [63]. It’s
important to note that VFID scores are typically lower for our
approach due to their reliance on the completed video, which
primarily comprises original parts.

C. PERFORMANCE EVALUATION
1) QUANTITATIVE COMPARISON
Our quantitative evaluation involves various masks, includ-
ing object, curve, and stationary masks, on both the
Youtube-VOS and DAVIS datasets. The results, presented
in Table 2, demonstrate the superior video completion
performance of our model in comparison to state-of-the-
art algorithms [7], [8], [43], [46], [61], particularly when
considering the object mask for all evaluation metrics.
Additionally, our approach exhibits potentially superior or
competitive performance across other mask types in all
evaluations. These findings underscore the critical role of our
proposed module in enhancing the visual quality of inpainted
videos.

Furthermore, we provide a comprehensive analysis of
running time efficiency, as outlined in Table 3. Remarkably,
our model showcases the lowest FLOPs and the highest FPS,
signifying its exceptional efficiency in the context of video
inpainting tasks.

2) QUALITATIVE COMPARISON
To underscore the superiority of our proposed method,
we present selected results that highlight the capacity of our

FIGURE 7. Visualization of token representation. (a) Patch-based token
representation [13]. (b) Discrete feature to token [14]. (c) Restricted
receptive field feature to token [16]. (d) Fast Fourier convolution-based
token representation.

TABLE 4. Comparisons with different configurations of video inpainting
architectures for the object removal task.

approach to address both short-range and long-range interac-
tions in video inpainting scenarios. Figure 6 showcases video
inpainting samples involving object removal, curve masks,
and stationary mask corruptions. In all of these instances,
our inpainting results exhibit remarkable coherence in both
spatial and temporal aspects across various mask types.
Notably, our model excels in synthesizing sharp and clear
appearances during object removal tasks, effectively pre-
serving background textures in regions that were previously
invisible or occluded. We also provide additional results for
further illustration, available in Section IV-D.

3) USER STUDY
To mitigate potential biases inherent in selected evaluation
metrics, we conducted a user study to assess the visual quality
of our model in comparison to strong baseline methods such
asOPN, STTN, and FGT. For the study, we randomly selected
20 videos from the DAVIS test split and introduced object,
curve, and stationary masks to these samples. Subsequently,
we used the baseline models to complete the corrupted
videos. Paired comparisonswere then carried out between our
method (TVI) and the selected baselines, using the same set
of videos.

The user study engaged 23 participants, each tasked with
choosing themore plausible or visually natural video between
our results and a randomly chosen counterpart from the
baselines. Our method achieved the majority of votes over
all baselines. Specifically, the win-rates of TVI against the
baselines are as follows: OPN (81.3%), STTN (69.48%), and
FGT (53.87%) for the object mask. This outcome underscores
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FIGURE 8. Qualitative comparisons of different token representations.

FIGURE 9. Architecture selections. (a) consists of a spatial transformer that interacts with frame-wise information.
(b) consists of a temporal transformer that interacts with sequential frame information simultaneously.

that the video inpainting produced by our method is generally
preferred and less discernible compared to the other baseline
approaches.

D. ABLATION STUDIES
In this section, we conduct a series of ablation studies to
individually assess the impact of various components in our
proposed approach. We aim to analyze the effectiveness of
Fourier convolutions, the role of transformer blocks, the
benefits of iterative refinement, and the effects of pre-training
from an image dataset.

1) THE POWER OF FOURIER CONVOLUTION
Fourier convolutions, rooted in periodic convolutions, offer
full differentiability and the flexibility to seamlessly integrate
and interchange with conventional convolutions. Owing to
their comprehensive receptive field that spans the entire frame
in the spectral domain, Fourier convolutions encourage the
network to capture global context from the inception of the
layer. This characteristic holds significance for our video
inpainting framework, wherein frames are represented as
sequential tokens due to their sensitivity to large and moving
masks.

To underscore the potency of Fourier convolutions,
we undertook experiments to analyze different token repre-
sentation methods, drawing from recent vision transformer
research [13], [14], [16]. As depicted in Figure 7, we divided
each frame into fixed patches and flattened each patch to
serve as a token, as per the approach of Vision Transformers
(ViT) [13]. However, as indicated in Table 4 and Figure 8,

FIGURE 10. The visualization of input images and intermediate features
illustrates consistent representation for distant frames with similar
contextual meanings.

the results yielded temporally coherent appearances yet
exhibited quantitatively and qualitatively blurry textures.
Employing token representation akin to VQGAN [14], which
initially encodes the image using conventional convolution
layers and then quantizes its feature into tokens through a
learnable dictionary, yielded visually plausible outcomes but
struggled to reconstruct fine details. To extend the token
representation comparison, we utilized the constrained CNN
approach [16], designed to ensure each token encapsulated
individual information without becoming intertwined with
neighboring pixels. This method delivered relatively better
quantitative and qualitative outcomes, though certain details
remained deficient.

We attribute this discrepancy to the limited receptive field
of token representation. Unlike other low-level vision tasks
(e.g., style transfer, color transfer, super-resolution, etc.),
in the context of video inpainting, a substantial portion of
each frame is marred by the mask, leading to a dearth
of information in those regions. Consequently, a restricted
receptive field for autonomous token representation can result

VOLUME 12, 2024 21733



T. Kim et al.: Deep Transformer Based Video Inpainting Using Fast Fourier Tokenization

FIGURE 11. Comparison results for different iteration numbers.

in tokens that hold little utility within the video inpainting
domain. Moreover, while transformer approaches excel at
modeling non-local interactions, they tend to be less adept
at capturing intricate local details. This accentuates the
significance of fine-grained token representation in video
inpainting tasks.

In contrast to preceding token representation strate-
gies [13], [14], [16], our Fourier convolution-based token
representation encompasses the global context, effectively
bridging the gap between global and fine-grained token
representation. As delineated in Table 4 and Figure 8,
our outcomes showcase substantial enhancements in both
quantitative and qualitative assessments.

2) EFFECTIVENESS OF THE SEPARATED SPATIAL AND
TEMPORAL TRANSFORMER
To determine the optimal architecture configuration, we con-
ducted a thorough validation of two plausible baseline
models, as depicted in Figure 9 (a) and (b). These two baseline
networks differ in terms of their interaction range. In Figure 9
(a), the spatial transformer operates on a sequence of indi-
vidual frame tokens with positional embeddings, focusing
on intramodal relationships within a frame. Consequently,
this network reconstructs frames without accounting for
temporal dependencies. Conversely, in Figure 9 (b), the
temporal transformer extends local interactions into global
interactions. This is achieved by taking an entire sequence
of frame tokens as input and calculating dot-product attention
across the sequence. In contrast to thesemodels, our approach
segregates short- and long-range visual dependencies.

Quantitative performance results for three distinct network
configurations—F, G, and H—are presented in Table 4.
Notably, the configuration I outperforms the other architec-
tures across all metrics by a significant margin. This stems
from the heightened capacity to capture spatial and temporal
coherence features, which is facilitated by the separate
handling of interaction modes. It’s important to note that
configurations F and G were equipped with the same number
of transformer layers to mitigate performance discrepancies
based on layer depth. This suggests that the process of
identifying spatial dependencies is not only memory-efficient
by circumventing long-range interactions but also excels in
preserving finer details.

Additionally, we present intermediate results after passing
through the temporal transformer. To achieve this, we applied

one-step PCA to the features at intermediate stages. As shown
in the figure 10, despite a significant gap between frames,
parts with contextually similar meanings exhibit similar score
values. This observation indicates the effective filling of
masked regions through long-range feature interaction.

3) EFFECTIVENESS OF THE ITERATIVE REFINEMENT
The effectiveness of the iterative refinement module, which
progressively enhances the visible region at the feature
levels, constitutes a significant contribution of our work.
In this section, we focus on elucidating the impact of the
iterative refinement process. The results corresponding to
different iteration values (N ) on the DAVIS dataset are
presented in Figure 11. These quantitative scores were
obtained after the same number of training iterations.
Notably, this ablation study underscores the robustness of our
approach to variations in this hyperparameter. The findings
also demonstrate an enhancement in performance with an
increasing number of iterations. However, once the iteration
count exceeds 6, the magnitude of performance improvement
diminishes considerably. The detailed results subsequent
to the integration of iterative refinement are showcased in
Figure 11.

4) EFFECTIVENESS OF PRE-TRAINING FROM IMAGE
DATASET
The effectiveness of pre-training the proposed model from
large image datasets is notable in enhancing the learning
of short- and long-term dependencies, a critical aspect
of our transformer-based architecture. The inductive-free
design of the transformer blocks necessitates a substantial
amount of data for effective learning. In order to address
this challenge, we employ pre-training with large-scale
image datasets. Configuration F in Table 4 showcases the
quantitative results of this pre-training approach. The TVI
model, augmented with the pre-training procedure, exhibits
improved performance in terms of PSNR (34.84), SSIM
(0.8832), and VFID (0.3403) on the DAVIS dataset.

V. CONCLUSION
In summary, this paper presents an innovative transformer-
based approach for video inpainting, specifically address-
ing the challenge of handling distant space-time visual
dependencies. Leveraging the expressive power of Fourier
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Frame Convolution (FFC), our method extracts tokens from
sequential frames. These tokens undergo processing through
dedicated spatial and temporal transformers, facilitating
interframe completion and subsequent intra-frame coherence
refinement. While our architectural design demonstrates
effectiveness in establishingmeaningful connections between
distant frames, it is essential to consider future directions
and potential drawbacks. Future research could explore
optimizing computational efficiency without compromising
performance or adapting the model to real-time process-
ing requirements. Additionally, investigating the model’s
robustness to diverse and complex scenes would be valuable
for practical applications. Thorough analyses and extensive
experiments showcase the superiority of our method over
previous video inpainting approaches in terms of both qualita-
tive and quantitative performance. However, acknowledging
potential limitations and addressing them in future research
will contribute to the continued advancement of video
inpainting techniques.
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