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ABSTRACT This paper presents an iterative proportional-integral-derivative (PID) controller design ap-
proach. To achieve the desired control performance, the control designer iteratively increases the proportional
(P) and derivative (D) gains. And then, the integral controller is added to the obtained PD controller to
reduce the steady-state error. Thus, the proposed approach is easy to implement and effective since it aims to
maximize P-gain. Moreover, the stability conditions are presented to explain why stability is ensured while
increasing PID gains. Simulations for the motor control system are peformed to validate the effectiveness of
the proposed approach.

INDEX TERMS control system design, PID control, PID tuning method

I. INTRODUCTION

DUE to the simple structure and intuitive implementation,
the proportional-integral-derivative (PID) control tech-

nique has been widely utilized in industrial applications such
as process control systems [1]–[3], motor control systems
[4]–[9], robot manipulators [10]–[12], power systems [13],
[14], and magnetic levitation systems [15]. Further, it pro-
vides powerful control performance and robustness against
model uncertainties and disturbances by merely selecting
three tuning parameters. Such wide applications have moti-
vated developing of various PID controller design approaches
including Ziegler-Nichols tuning rule [16], [17], Cohen-Coon
method [18], internal model controller [19], relay feedback
based autotuning [20], [21], pulse response based tuning [22].
In addition, various advanced control techniques have been
employed to provide automatic tuning rules. For instance, the
data-driven PID design [23], linear matrix inequality (LMI)
based optimization method [24], [25], generic algorithm [26],
[27], and reinforcement learning-based tuning method [28]
have been presented.

PID controller design approaches mentioned above are
roughly classified into model-based and model-free meth-
ods [29]. Model-based methods require accurate information
about the plant model and sometimes assume that the plant
is modeled as the first-order plus time delay or second-order
plus time delay systems. Model-free methods are based on
input-output data obtained by experiments and the minimiza-

tion of certain objective functions. However, in real situations,
various inevitable factors like plant nonlinearities and model
uncertainties, external disturbances, and load variations lead
to control performance degradation. Even within a small
operating region, selecting PID gains to achieve the desired
transient and steady-state performance in the region of inter-
est is a challenging task. Thus, after an initial selection of PID
gains by the approaches above, fine-tuning of PID gains is
required through a trial-and-error procedure [16].

Indeed, each parameter of PID controller has its own phys-
ical interpretation in terms of the performance of the closed-
loop system [30]. The proportional (P) gain provides a control
action, proportional to the error between the desired and ac-
tual outputs, to follow the output to the desired reference. The
closed-loop system response improves as P-gain increases.
The integral (I) gain represents the accumulated control effort
using past error information. Adding an integrator into the
control loop reduces the steady-state error. However, increas-
ing I-gainmay degrade the stability of the closed-loop system.
The derivative (D) gain implies the anticipated control effort
reflecting the rate of change of the ongoing error. Thus, the
transient response, such as rise time, overshoot, and settling
time, is improved by increasing D-gain. Based on the physical
meaning of each PID term and output response, the control
designer can iteratively tune PID parameters to satisfy the
desired control objectives. However, it is a time-consuming
procedure and requires an expert control engineer to obtain
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satisfactory control performance.
One of the simple but effective tuning methods is to maxi-

mize P-gain by alternately increasing P- and D-gains repeat-
edly. First, the control designer increases P-gain until the
system oscillates. Then, D-gain is increased to mitigate the
oscillation to improve the transient response. In a sequential
manner, the designer increases P- and D-gains to attain the
desired control performance iteratively. Finally, if necessary, I
controller is added to the obtained PD controller to reduce the
steady-state error. Since it is easy to implement and improve
control performance, this approach has been utilized in tuning
the motor controllers for mechanical systems with a large
number of degrees of freedom (e.g., humanoid and articulated
robots). Nonetheless, to the best of the authors’ knowledge,
there is no detailed design procedure or theoretical analysis
for stability and performance improvement.

This paper deals with the iterative PID tuning approach
to maximize P-gain. The main contributions and theoretical
developments are as follows. We rigorously formulate the
iterative PID tuning procedure and explain how the proposed
approach enhances the control performance by maximizing
P-gain. Then, the stability conditions are presented to ex-
plain why stability is guaranteed while increasing PID gains.
The presented analysis explains why the high gain control
may destabilize the closed-loop system in real applications.
Furthermore, to validate the effectiveness of the proposed
approach, simulations for the motor control system are per-
formed.

The rest of this paper is organized as follows. In the fol-
lowing section, the preliminary results for Hurwitz stability
based on the interlacing property and the problem under
consideration are introduced. Section III proposes the itera-
tive PID design procedure and discusses the stability of the
closed-loop system while increasing PID gains. In Section
IV, simulations for the motor control system are performed to
verify the proposed approach. Finally, we conclude this paper
in Section V.

II. PROBLEM FORMULATION
Routh-Hurwitz stability criterion is a useful tool for investi-
gating the stability of linear time-invariant systems. In this
paper, we introduce an alternative stability condition for lin-
ear systems based on interlacing property. In addition, the PID
control design problem under consideration is formulated.

A. PRELIMINARIES
Consider the following polynomial with real coefficients ai.

g(s) = ansn + an−1sn−1 + · · ·+ a1s+ a0. (1)

The polynomial g(s) is said to be of degree n if an ̸= 0. A
Hurwitz polynomial implies that all its roots are in the open
left half complex plane. The odd and even part polynomials
of (1) are denoted by

geven(s) = a0 + a2s2 + a4s4 + · · · ,
godd(s) = a1s+ a3s3 + a5s5 + · · · .

(2)

In addition, we define

ge(ω) = geven(jω) = a0 − a2ω2 + a4ω4 + · · · ,
go(ω) = godd(jω)/jω = a1 − a3ω2 + a5ω4 + · · · .

(3)

Definition 1: The polyomial g(s) of degree n satisfies the
interlacing property if
a) The degree of g(s) is even (i.e., n = 2k) with

ge(ω) = (−1)ka2kω2k + · · · − a2ω2 + a0,

go(ω) = (−1)k−1a2k−1ω
2k−2 + · · · − a3ω2 + a1.

b) The coefficients a2k and a2k−1 have the same sign.
c) All the roots of ge(ω) and go(ω) are real and distinct,

and the k positive roots of ge(ω) together with the k − 1
positive roots of go(ω) interlace as follows:

0 < ωe,1 < ωo,1 < · · · < ωo,k−1 < ωe,k

or if
a) The degree of g(s) is odd (i.e., n = 2k + 1) with

ge(ω) = (−1)ka2kω2k + · · · − a2ω2 + a0,

go(ω) = (−1)ka2k+1ω
2k + · · · − a3ω2 + a1.

b) The coefficients a2k+1 and a2k have the same sign.
c) All the roots ofge(ω) andgo(ω) are real and distinct, and

the k positive roots of ge(ω) together with the k positive
roots of go(ω) interlace as follows:

0 < ωe,1 < ωo,1 < · · · < ωe,k < ωo,k

□
Theorem 1: The polynomial g(s) is a Hurwitz polynomial if
and only if it satisfies the interlacing property. □
For more details on the interlacing property (Definition 1 and
Theorem 1), please refer to [31].

We provide the following two examples to illustrate Theo-
rem 1.
Example 1: Consider a third-order polynomial g3(s) = s3 +
3s2 + 3s+ 1. Then, we have

g3
e (ω) = −3ω2 + 1,

g3
o(ω) = −ω2 + 3.

(4)

The positive roots of g3
e and g3

o are ω3
e,1 = 1/

√
3 and

ω3
o,1 =

√
3. Thus, g3(s) satisfies the interlacing property and

obviously it is a Hurwitz polynomial. □
Example 2: Consider a sixth-order polynomial

g6(s) = s6 + 6s5 + 15s4 + 20s3 + 15s2 + 6s+ 1. (5)

The even and odd parts of (5) are given by

g6
e (ω) = −ω6 + 15ω4 − 15ω2 + 1,

g6
o(ω) = 6ω4 − 20ω2 + 6.

Then, as shown in Fig. 1, the positive roots of g6
e (ω) and

g6
o(ω) are ω6

e,1 = 2 −
√
3 ≈ 0.2679, ω6

e,2 = 1, and
ω6
e,3 = 2 +

√
3 ≈ 3.7321 and ω6

o,1 =
√
3/3 ≈ 0.5774

and ω6
o,2 =

√
3 ≈ 1.7321, respectively. Thus, the interlacing

property holds and g6(s) is a Hurwitz polynomial. □
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FIGURE 1. Even and odd parts of polynomial p6(s) in (5)

FIGURE 2. Configuration of the closed-loop system

B. CONFIGURATION OF CLOSED-LOOP SYSTEM WITH
PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL
Consider the feedback control system in Fig. 2. The actual
plant P is of the form.

P(s) =
n(s)
d(s)

=
1

ansn + an−1sn−1 + · · ·+ a1s+ a0
. (6)

where ai’s are real coefficients and the positive integer n is
the degree of the denominator.

To stabilize P and satisfy the control objectives such as
rise time, overshoot, settling time, and steady-state error, we
employ PID controller C as follows:

C(s) = KP + KI
1

s
+ KDs. (7)

where KP, KI , and KD are the proportional, integral, and
derivative control gains, respectively. Depending on specific
applications, different variants of PID controllers are utilized.
For example, the proportional-derivative (PD) controller (i.e.,
KI = 0) has been widely employed in robot manipulator sys-
tems [32]. In contrast, the proportional-integral (PI) controller
(i.e., KD = 0) has been used in motor control systems [33].
Here, the signals r , y, e, and u stand for the reference, output,
error, and control input, respectively. The transfer function
from the reference input to the output is represented as

y(s)
r(s)

=
P(s)C(s)

1 + P(s)C(s)
=

ncl(s)
dcl(s)

. (8)

FIGURE 3. Even and odd parts of characteristic polynomial with KP = 0
and KP = 2.89

Definition 2:The closed-loop system (8) is said to beHurwitz
stable if and only if dcl(s) is a Hurwitz polynomial. □
Now, we discuss how to design a PID controller for achieving
the desired performance by maximizing KP and guaranteeing
the stability of the overall closed-loop system.

III. ITERATIVE DESIGN APPROACH FOR
PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) CONTROL
A. MOTIVATING EXAMPLE
This subsection presents an example how to select PD control
gains iteratively for maximizing P-gain. Consider a fifth-
order plant given by

P(s) =
1

s5 + 5s4 + 10s3 + 10s2 + 5s+ 1
.

Initially, we design a proportional (P) controller C(s) = KP.
The characteristic polynomial of the closed-loop system and
its even and odd parts are given by

g1(s) = s5 + 5s4 + 10s3 + 10s2 + 5s+ 1 + KP,

g1
e (ω) = 5ω4 − 10ω2 + 1 + KP,

g1
o(ω) = ω4 − 10ω2 + 5.

Fig. 3 shows the plot of g1
e (ω) and g

1
o(ω) with respect to KP.

As KP increases, the magnitude of g1
e (ω) grows and ωe,1, the

smallest positive root of g1
e (ω), moves to the right to ωo,1, the

smallest positive root of g1
o(ω), until KP reaches 2.89. Thus,

the closed-loop system isHurwitz stable with 0 ≤ KP < 2.89.
Next, we choose the derivative gain KD for PD controller

C(s) = KP + KDs for a fixed KP = 2.89. Then, we have

g2(s) = s5 + 5s4 + 10s3 + 10s2 + (5 + KD)s+ 3.89,

g2
e (ω) = 5ω4 − 10ω2 + 3.89,

g2
o(ω) = ω4 − 10ω2 + 5 + KD.

As shown in Fig. 4,ωo,1 moves to the right fromωe,1 toωe,2 as
KD increases. Then, the interlacing property is preserved and
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FIGURE 4. Even and odd parts of characteristic polynomial with
KP = 2.89, and KD = 0 and KD = 7.53

FIGURE 5. Step responses of the closed-loop system with respect to KD

the closed-loop system is stable for 0 < KD < 7.53. Since
the gain KD affects the transient response and the excessively
large value makes the system oscillate, to achieve the desired
behavior, KD is determined using the trial-and-error method
within the stable region. Fig. 5 presents the step responses
of the closed-loop system with respect to KD. To reduce the
overshoot and oscillation simultaneously, we select KD = 3.
In the next step, we obtain KP = 3.92 and KD = 5. Similarly,
we use the iterative procedure to increase the proportional
gain.

B. STABILITY CONDITION FOR INCREASING PID GAINS
In this subsection, we deal with why stability is guaranteed
despite increasing the gains of PID controller. The first two
theorems are for increasing P- and D-control gains in an
iterative PD control design procedure. After selecting the
PD gains, the last theorem shows how to select I-gain KI to

improve the disturbance rejection performance and reduce the
steady-state error of the closed-loop system.
Theorem 2: Suppose that the plant P(s) in (6) is Hurwitz
stable. Then, there exists a positive constant KP such that, for
all 0 ≤ KP < KP, the closed-loop system with P controller
C(s) = KP in Fig. 2 is Hurwitz stable. □
Proof: If n ≤ 2, then the proof is trivial since the first or
second-order polynomial having positive coefficients is al-
ways Hurwitz. Thus, for any KP > 0, the closed-loop system
with a P controller is Hurwitz stable for all 0 ≤ KP < KP.
The characteristic polynomial of the closed-loop system is

computed as

p(s) = ansn + an−1sn−1 + · · ·+ a1s+ a0 + KP. (9)

We first consider the case that the degree of (9) is odd (i.e.,
n = 2k + 1 where k is a positive integer). Then, the odd and
even parts of (9) are represented as

ge(ω) = (−1)ka2kω2k + · · · − a2ω2 + (a0 + KP),

go(ω) = (−1)ka2k+1ω
2k + · · · − a3ω2 + a1.

(10)

The plant is Hurwitz stable, so the characteristic polynomial
in (9) with KP = 0 satisfies the interlacing property:

0 < ωe,1 < ωo,1 < · · · < ωe,k < ωo,k . (11)

where ωe,i and ωo,i are the positive roots of ge(ω) and go(ω),
respectively. As KP increases, the function ge(ω) goes up.
Hence, for a positive integer i, ωe,2i−1 moves to the right
to ωo,2i−1 and ωe,2i moves to the left to ωo,2i−1. Thus, there
exists a positive constantKP such that the interlacing property
does not hold (i.e., ωe,2i−1 or ωe,2i intersect ωo,2i−1).
Now, let us suppose that the degree of (9) is even (i.e., n =

2k + 2) and we have

ge(ω) = (−1)k+1a2k+2ω
2k+2 + · · · − a2ω2 + (a0 + KP),

go(ω) = (−1)ka2k+1ω
2k − · · · − a3ω2 + a1.

(12)

When KP = 0, the positive roots of ge(ω) and go(ω) also
satisfy the following inequality:

0 < ωe,1 < ωo,1 < · · · < ωo,k < ωe,k+1. (13)

As KP increases, for a positive integer i, ωe,2i−1 moves to the
right to ωo,2i−1 while ωe,2i moves to the left to ωo,2i−1. The
last root ωe,k+1 moves to the right and does not intersect the
root of go(ω). Therefore, there exists a positive constant KP

such that, for all 0 ≤ KP < KP, the inequality (13) holds and
it conclude the proof. ■
The following lemma presents how stability is preserved

while increasing P-gain.
Lemma 3: Suppose that PD control gains KP and KD are
designed for the plant (6) such that the closed-loop system
with PD controller C(s) = KP + KDs in Fig 2 is Hurwitz
stable. Then, there exists a positive constant KP such that, for
allKP < K̃P < KP, the closed-loop systemwith PD controller
C(s) = K̃P + KDs in Fig. 2 is Hurwitz stable. □
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Proof: We assume that PD controller is designed to stabilize
the plant (6), so its characteristic polynomial

ppd(s) = ansn+an−1sn−1+· · ·+(a1+KD)+(a0+KP) (14)

is Hurwitz. Then, the characteristic polynomial of the closed-
loop system with PD controller is represented as

p̃pd(s) = ansn + an−1sn−1 + · · ·+ (a1 + KD)s

+ (a0 + KP + K̃P − KP)
(15)

Since 0 < K̃P − KP < KP − KP, from Theorem 2, (15) is the
Hurwitz polynomial, which concludes the proof. ■

As a counterpart of Theorem 2 and Lemma 3, we provide
results for designing D-gain.
Theorem 4: Suppose that the plant P(s) in (6) is Hurwitz
stable. Then, there exists a positive constant KD such that, for
all 0 ≤ KD < KD, the closed-loop system with D controller
C(s) = KDs in Fig. 2 is Hurwitz stable. □
Proof: Since the proof for the case n ≤ 2 is trivial, we start

the proof from n ≥ 3. The characteristic polynomial of the
closed-loop system is

p(s) = ansn + an−1sn−1 + · · ·+ (a1 + KD)s+ a0. (16)

The odd and even parts of (16) are obtained as follows:
if the degree of (16) is odd, then

ge(ω) = (−1)ka2kω2k + · · · − a2ω2 + a0,

go(ω) = (−1)ka2k+1ω
2k + · · · − a3ω2 + (a1 + KD),

(17)

on the other hand, if the degree of (16) is even, then

ge(ω) = (−1)k+1a2k+2ω
2k+2 + · · · − a2ω2 + a0,

go(ω) = (−1)ka2k+1ω
2k − · · · − a3ω2 + (a1 + KD).

(18)

As shown in (17) and (18), KD only affects the function go(ω)
and the value of go(ω) increases as KD increases. The rest of
the proof is similar to that of Theorem 2. Thus, we omit the
details. ■
Lemma 5: Suppose that PD control gains KP and KD are
designed for the plant (6) such that the closed-loop system
with PD controller C(s) = KP + KDs in Fig 2 is Hurwitz
stable. Then, there exists a positive constant KD such that,
for all KD < K̃D < KD, the closed-loop system with PD
controller C(s) = KP + K̃Ds in Fig. 2 is Hurwitz stable. □
Proof:The detailed proof is almost the same as that of Lemma
3 except that the characteristic polynomial of the closed-loop
system is ansn + an−1sn−1 + · · · + (a1 + K̃D)s + a0 + KP.
Hence, we omit it here. ■

Note that Theorems 2 and 4 are only applicable to Hurwitz
stable systems. Even though they seem restrictive, the systems
considered can be easily extended to a more general class
of systems. For instance, if plant (6) is input feedforward
passive (i.e., the plant is marginally stable except in some
special cases where the poles are in jω-axis), the closed-
loop system is asymptotically stabilizable by a simple static
output feedback control (e.g., P control) [34], [35]. Thus, the
above results are applicable to motor and general mechanical
systems having a single integrator.

The next theorem is for adding I-control to a pre-designed
PD controller.
Theorem 6: Suppose that PD control gains KP and KD are
designed for plant (6) such that the closed-loop system with
PD controller C(s) = KP + KDs in Fig 2 is Hurwitz stable.
Then, there exists a positive constant K I such that, for all 0 ≤
KI < K I , the closed-loop system with PID controller C(s) =
KP + KI (1/s) + KDs in Fig. 2 is Hurwitz stable. □
Proof:By the assumption for PD control, the characteristic

polynomial

ppd(s) = ansn+an−1sn−1+· · ·+(a1+KD)+(a0+KP) (19)

is Hurwitz. Then, the characteristic polynomial with PID
controller is calculated as

p(s) = ansn+1 + an−1sn + · · ·
+ (a1 + KD)s2 + (a0 + KP)s+ KI

= sppd(s) + KI

(20)

In fact, the roots of p(s) are the poles of the unity feedback
system with the transfer function H(s) = KI/(sppd(s)).
Recall that, from the root locus method, the loci are on the
real axis to the left of an odd number of poles and zeros [36].
H(s) has no zeros and all the poles are in the left half complex
plane except for one pole at the origin. It implies that this
pole at the origin moves to the left on the negative real axis
while the other poles stay in the left half complex plane as KI
increases from zero [31], [37]. Thus, for a sufficiently small
KI , the closed-loop system is Hurwitz stable. This concludes
the proof. ■

C. ITERATIVE DESIGN APPROACH FOR
PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) CONTROL
Inspired by the motivating example discussed in subsection
III-A, we present an iterative design procedure for PID control
to maximize KP while guaranteeing stability.

Iterative Design Procedure for PID Control

Step 0: Set initial P-gain K0
P and D-gain K0

D. Select a
tolerance ϵ > 0 and a maximum number of iterations m.

Step 1: Increase P-gain from K0
P , find K

0
P when the output

of the closed-loop system exhibits sustained oscillations (i.e.,
the closed-loop system is marginally stable), and select K1

P

such that K0
P < K1

P < K
0
P. Then, for the chosen P-gain K1

P ,
increase D-gain from K0

D and select K1
D such that the output

of the closed-loop systemmeets the desired transient response
(if possible, it is critically damped).

Step i: Increase P-gain from K i−1
P , find K

i−1
P when the

output exhibits sustained oscillations, and select K i
P such that

K i−1
P < K i

P < K
i−1
P . Then, for the chosen P-gainK i

P, increase
D-gain from K i−1

D and select K i
D such that the output meets

the desired transient response. If K i
P − K i−1

P < ϵ, then set
Kp = K i

P and KD = K i
D and go to Step m.

Step m − 1: Increase P-gain from Km−2
P , find K

m−2
P when

the output exhibits sustained oscillations, and select Km−1
P

VOLUME 11, 2023 5
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such that Km−2
P < Km−1

P < K
m−2
P . Then, for the chosen

Km−1
P , increase D-gain from Km−2

D and select Km−1
D such that

the output meets the desired transient response. Set KP =
Km−1
P and KD = Km−1

D and go to Step m.
Step m: If necessary, with the obtained KP and KD, in-

crease I-gain from 0 and select an appropriate KI to reduce
the steady-state error while guaranteeing stability. Stop the
procedure.

It is an iterative procedure. Step 0 is the initialization
step. An appropriate PID control design method chooses K0

P
and K0

D such that the closed-loop system with PD control
is Hurwitz stable. Since a large P-gain enhances the control
system performance, the designer may try to continuously
repeat the tuning process to obtain as large P-gain possible.
However, it is time-consuming work and a trade-off between
cost and performance needs to be balanced. Therefore, two
design parameters ϵ andm are determined taking into account
such practical implementation.

Let usmove to Step 1. By Lemma 3, the closed-loop system
remains Hurwitz stable while increasing P-gain from K0

P to
K

0
P. Then, for the chosen K

1
P , the closed-loop system remains

Hurwitz stable while increasing D-gain by Lemma 5. In a
similarmanner, the proposed procedure proceeds sequentially
to Step m. Therefore, as the step goes on, K i

P and K i
D gradu-

ally grow and are monotonically increasing sequences. When
n ≤ 3, the designer can select an arbitrarily large KP and KD
using the proposed algorithm. When n ≤ 2, then selecting
large gain parameters is trivial since the closed-loop system
is Hurwitz stable for all KP > 0 and KD > 0. When n = 3,
each function ge(ω) and go(ω) has only one positive root
ωe,1 and ωo,1, respectively. It implies that there is no root of
ge(ω) on the right side of ωo,1. Thus, KD can be increased
unboundedly and, for any arbitrarily largeKP, one can findKD
by the proposed iterative procedure such that the closed-loop
system is Hurwitz stable. However, in practical applications,
the gains are limited by the effects of system nonlinearities
and input saturation. In contrast, when n ≥ 4, there is an upper
bound K⋆

P for a monotonically increasing sequence K i
P. As

KP increases, ge(ω) of (9) goes up, and any two roots ωe,2i−1

and ωe,2i get closer and eventually merge with each other (i.e.,
ωe,2i−1 moves to the right and ωe,2i moves to the left). Hence,
ωe,2i−1 and ωe,2i become repeated roots and the interlacing
property does not hold. These observations explain why the
high gain may destabilize the closed-loop system in the actual
controller design.

In robot manipulator systems, PD control is sufficient to
meet the desired control objectives [32]. However, if there
is a steady-state error, then I control is a remedy for this
problem. When it is necessary, I controller is added into
the predetermined PD controller at Step m. As discussed in
Theorem 6, for small KI , the poles of the closed-loop system
with PID control stay around the poles of the closed-loop
system with PD control (i.e., KI = 0) except the one pole
near the origin. Thus, a simple design guideline for I-gain is
that the designer selects a small KI to reduce the steady-state

FIGURE 6. Diagram of Electromechanical System

TABLE 1. Parameters of two-inertia system

Jm Motor inertia 0.00844 lbf −in−s2
Jl Load inertia 1 lbf −in−s2
Bm Motor shaft viscous damping coefficient 0.00013 lbf −in/deg/s
Bl Load shaft viscous damping coefficient 0.5 lbf −in/deg/s
L Armature inductance 0.0006 H
R Armature resistance 1.4 Ω
Ka Amplifier gain 12
Kb Back emf constant 0.00867V/deg/s
Km Torque constant 4.375lbf −in/A
ng Gear ratio 200

error and simultaneously maintain the pre-designed transient
response.

IV. APPLICATION TO MOTOR CONTROL SYSTEM
In order to validate the proposed PID design approach, we
design a PID controller for an electromechanical system in
Fig. 6. The variables θm and ωm are the motor shaft angle and
velocity, respectively, θl and ωl are the load shaft angle and
velocity, respectively, τm is the generated motor torque, ia and
va are the armature current and voltage, respectively, vb and
vref are the back emf and reference voltages, respectively. The
values of each parameter Jm, Jl , Bm, Bl , L, R, Ka, Kb, Km, and
ng are given in Table 1 [38]. The transfer function from vref
to θl is represented as

P(s) =
1

ap3s3 + ap2s2 + ap1s
(21)

where ap1 = ng(BR + Kb)/Ka, ap2 = ng(JR + BL)/Ka, and
ap3 = ngJL/Ka. Here, J = Jm+Jl/n2g andB = Bm+Bl/n2g are
the effective inertia and damping coefficients, respectively.

Using the proposed iterative PID design approach, we de-
signed PD gains with m = 3 as follows. At Step 0, we set
K0
P = 10 and K0

D = 3 from initial guessing. Then, at Step 1,
the output of the closed-loop system exhibits sustained oscil-
lation with K

0
P = 456. We select K1

P = 450 and K1
D = 15.5

to make the step response of the closed-loop system critically
damped. Iteratively, we choose K2

P = 30000 and K2
D = 122

at Step 2. At Step 3, PD gains are selected as K3
P = 255000

and K3
D = 230 to prevent excessive overshoot. Note that the

simulations are performed in Simulink/Matlab environment
using ode45 method. Fig. 7 shows the step responses of the
closed-loop system with PD control gains at each step. Since
the output follows the reference input without steady-state
error, I control is unnecessary. Thus, we complete the iterative
procedure at Step 3. It is observed that, as the step proceeds,
the performance of the closed-loop system, such as rise time
and system response, improves. Thus, the control designer
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FIGURE 7. Step responses of the motor control system with PD control
designed using the proposed algorithm

TABLE 2. Control gains of three PID controllers

Tuning approach KP KD KI
Proposed approach 200, 000 230 −
Ziegler-Nichols (ZN) 204 3.825 2720
Phase margin (PM) 170 7.65 878.553

can easily design a PID controller using the iterative gain
tuning approach.

To further show the efficacy of the proposed iterative PID
tuning approach, we compare the step responses of the closed-
loop system with PID controllers designed by the proposed
approach, Ziegler-Nichols method (ZN) [16], and a phase
margin design rule (PM) (the desired phase margin is 60o)
[39]. Detailed control gains of each PID controller are listed
in Table 2. It can be observed that Kp and Kd gains of the
proposed approach aremuch larger than those of the other two
approaches. Therefore, as depicted in Fig. 8, the performance
of the proposed approach outperforms those of the other two
approaches, despite lacking the integral control term.

V. CONCLUSION
In this paper, we propose an iterative PID controller de-
sign approach that maximizes P-gain to improve the control
performance. The proposed approach is simple and easy to
implement since it iteratively increases P- and D-gains. After
selecting PD gains, I controller is added to the obtained
PD controller to reduce the steady-state error. To rigorously
explain the proposed approach, the stability conditions are
presented to explainwhy stability is guaranteedwhile increas-
ing PID gains. To verify the performance of the proposed

FIGURE 8. Step responses of the motor control system with PID
controllers designed by the proposed approach (Proposed, solid),
Ziegler-Nichols method (ZN, dashed), and phase margin design rule (PM,
dotted)

approach, we implement it for a motor control system.
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