Detailed Information

Cited 0 time in webofscience Cited 7 time in scopus
Metadata Downloads

Atmospheric Pressure Chemical Vapor Deposition of Graphene Using a Liquid Benzene Precursor

Authors
Kang, CheongJung, Da HeeLee, Jin Seok
Issue Date
Nov-2015
Publisher
AMER SCIENTIFIC PUBLISHERS
Keywords
Graphene; Atmospheric Pressure; Liquid Benzene; Vapor Pressure
Citation
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, v.15, no.11, pp 9098 - 9103
Pages
6
Journal Title
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
Volume
15
Number
11
Start Page
9098
End Page
9103
URI
https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/10180
DOI
10.1166/jnn.2015.11557
ISSN
1533-4880
1533-4899
Abstract
Graphene has attracted great attention owing to its unique structural and electrical properties. Among various synthetic approaches of the graphene, metal assisted chemical vapor deposition (CVD) is the most reasonable and proper method to produce large-scale and low-defect graphene films. Until now, CVD from gaseous hydrocarbon sources has shown great promises for large-scale graphene growth, but high growth temperature is required for such growth. A recent work by using liquid benzene precursor has shown that monolayer graphene could be obtained at 300 degrees C by low pressure, required for high vacuum equipment. Here, we report the first successful attempt of atmospheric pressure CVD graphene growth on Cu foil using liquid benzene as a precursor. We investigated the effect of hydrogen partial pressure, growth time, and precursor temperature on the domain size of as-grown graphene. Also, micro-Raman analysis confirmed that these reaction parameters influenced the number of layer and uniformity of the graphene.
Files in This Item
Go to Link
Appears in
Collections
이과대학 > 화학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE