Iron transport by proteoliposomes containing mitochondrial F1Fo ATP synthase isolated from rat heart
- Authors
- Kim, Misun; Song, Eunsook
- Issue Date
- Apr-2010
- Publisher
- ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
- Keywords
- F1Fo ATP synthase; Iron transport; Rat heart mitochondria; Liposome
- Citation
- BIOCHIMIE, v.92, no.4, pp 333 - 342
- Pages
- 10
- Journal Title
- BIOCHIMIE
- Volume
- 92
- Number
- 4
- Start Page
- 333
- End Page
- 342
- URI
- https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/13230
- DOI
- 10.1016/j.biochi.2010.01.014
- ISSN
- 0300-9084
1638-6183
- Abstract
- In this work, we present evidence of Fe2+ transport by rat heart mitochondrial F1Fo ATP synthase. Iron uptake by the vesicles containing the enzyme was concentration- and temperature-dependent, with an optimum temperature of 37 C. Both ATP and ADP stimulated iron uptake in a concentration-dependent manner, whereas AMP, AMPPCP, and mADP did not. Inhibitors of the enzyme, oligomycin, and resveratrol similarly blocked iron transport. The iron uptake was confirmed by inhibition using specific antibodies against the alpha, beta, and c subunits of the enzyme. Interestingly, slight transport of common divalent and trivalent metal ions such as Mg+2, Ca+2, Mn+2, Zr+2, Cu+2, Fe+3, and Al+3 was observed. Moreover, Cu+2, even in the nM range, inhibited iron uptake and attained maximum inhibition of approximately 56%. Inorganic phosphate (Pi) in the medium exerted an opposite effect depending on the type of adenosine nucleotide, which was suppressed with ATP, but enhanced with ADP. A similarly stimulating effect of ATP and ADP with an inverse effect of Pi suggests that the activity of ATPase and ATP synthase may be associated with iron uptake in a different manner, probably via antiport of H+. (C) 2010 Elsevier Masson SAS. All rights reserved.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 이과대학 > 생명시스템학부 > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.