Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Subject-Specific Cognitive Workload Classification Using EEG-Based Functional Connectivity and Deep Learning

Authors
Gupta, AnmolSiddhad, GouravPandey, VishalRoy, Partha PratimKim, Byung-Gyu
Issue Date
Oct-2021
Publisher
MDPI
Keywords
CNN; cognitive workload; functional connectivity analysis; LSTM; mental workload; mutual information; phase locking value; phase transfer entropy
Citation
SENSORS, v.21, no.20, pp 1 - 19
Pages
19
Journal Title
SENSORS
Volume
21
Number
20
Start Page
1
End Page
19
URI
https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/146351
DOI
10.3390/s21206710
ISSN
1424-8220
1424-8220
Abstract
Cognitive workload is a crucial factor in tasks involving dynamic decision-making and other real-time and high-risk situations. Neuroimaging techniques have long been used for estimating cognitive workload. Given the portability, cost-effectiveness and high time-resolution of EEG as compared to fMRI and other neuroimaging modalities, an efficient method of estimating an individual's workload using EEG is of paramount importance. Multiple cognitive, psychiatric and behavioral phenotypes have already been known to be linked with "functional connectivity ", i.e., correlations between different brain regions. In this work, we explored the possibility of using different model-free functional connectivity metrics along with deep learning in order to efficiently classify the cognitive workload of the participants. To this end, 64-channel EEG data of 19 participants were collected while they were doing the traditional n-back task. These data (after pre-processing) were used to extract the functional connectivity features, namely Phase Transfer Entropy (PTE), Mutual Information (MI) and Phase Locking Value (PLV). These three were chosen to do a comprehensive comparison of directed and non-directed model-free functional connectivity metrics (allows faster computations). Using these features, three deep learning classifiers, namely CNN, LSTM and Conv-LSTM were used for classifying the cognitive workload as low (1-back), medium (2-back) or high (3-back). With the high inter-subject variability in EEG and cognitive workload and recent research highlighting that EEG-based functional connectivity metrics are subject-specific, subject-specific classifiers were used. Results show the state-of-the-art multi-class classification accuracy with the combination of MI with CNN at 80.87%, followed by the combination of PLV with CNN (at 75.88%) and MI with LSTM (at 71.87%). The highest subject specific performance was achieved by the combinations of PLV with Conv-LSTM, and PLV with CNN with an accuracy of 97.92%, followed by the combination of MI with CNN (at 95.83%) and MI with Conv-LSTM (at 93.75%). The results highlight the efficacy of the combination of EEG-based model-free functional connectivity metrics and deep learning in order to classify cognitive workload. The work can further be extended to explore the possibility of classifying cognitive workload in real-time, dynamic and complex real-world scenarios.</p>
Files in This Item
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Byung Gyu photo

Kim, Byung Gyu
공과대학 (인공지능공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE