Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Thermal Interface Enhancement via Inclusion of an Adhesive Layer Using Plasma-Enhanced Atomic Layer Deposition

Authors
Kwon, HeungdongPerez, ChristopherKim, Hyojin K.Asheghi, MehdiPark, WoosungGoodson, Kenneth E.
Issue Date
May-2021
Publisher
AMER CHEMICAL SOC
Keywords
atomic layer deposition; time-domain thermoreflectance; bonding strength; thermal boundary conductance; plasma treatment; platinum; nucleation layer
Citation
ACS APPLIED MATERIALS & INTERFACES, v.13, no.18, pp 21905 - 21913
Pages
9
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
13
Number
18
Start Page
21905
End Page
21913
URI
https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/146620
DOI
10.1021/acsami.0c19197
ISSN
1944-8244
1944-8252
Abstract
Interfaces govern thermal transport in a variety of nanostructured systems such as FinFETs, interconnects, and vias. Thermal boundary resistances, however, critically depend on the choice of materials, nanomanufacturing processes and conditions, and the planarity of interfaces. In this work, we study the interfacial thermal transport between a nonreactive metal (Pt) and a dielectric by engineering two differing bonding characters: (i) the mechanical adhesion/van der Waals bonding offered by the physical vapor deposition (PVD) and (ii) the chemical bonding generated by plasma-enhanced atomic layer deposition (PEALD). We introduce 40-cycle (similar to 2 nm thick), nearly continuous PEALD Pt films between 98 nm PVD Pt and dielectric materials (8.0 nm TiO2/Si and 11.0 nm Al2O3/Si) treated with either O-2 or O-2 + H-2 plasma to modulate their bonding strengths. By correlating the treatments through thermal transport measurements using time-domain thermoreflectance (TDTR), we find that the thermal boundary resistances are consistently reduced with the same increased treatment complexity that has been demonstrated in the literature to enhance mechanical adhesion. For samples on TiO2 (Al2O3), reductions in thermal resistance are at least 4% (10%) compared to those with no PEALD Pt at all, but could be as large as 34% (42%) given measurement uncertainties that could be improved with thinner nucleation layers. We suspect the O-2 plasma generates stronger covalent bonds to the substrate, while the H-2 plasma strips the PEALD Pt of contaminants such as carbon that gives rise to a less thermally resistive heat conduction pathway.
Files in This Item
Go to Link
Appears in
Collections
공과대학 > 기계시스템학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE