Epitaxial Single-Crystal Growth of Transition Metal Dichalcogenide Monolayers via the Atomic Sawtooth Au Surface
- Authors
- Choi, Soo Ho; Kim, Hyung-Jin; Song, Bumsub; Kim, Yong In; Han, Gyeongtak; Nguyen, Huong Thi Thanh; Ko, Hayoung; Boandoh, Stephen; Choi, Ji Hoon; Oh, Chang Seok; Cho, Hyun Je; Jin, Jeong Won; Won, Yo Seob; Lee, Byung Hoon; Yun, Seok Joon; Shin, Bong Gyu; Jeong, Hu Young; Kim, Young-Min; Han, Young-Kyu; Lee, Young Hee; Kim, Soo Min; Kim, Ki Kang
- Issue Date
- Apr-2021
- Publisher
- WILEY-V C H VERLAG GMBH
- Keywords
- atomic& #8208; sawtooth surface; chemical vapor deposition; epitaxial growth; single& #8208; crystal; transition metal dichalcogenides
- Citation
- ADVANCED MATERIALS, v.33, no.15, pp.1 - 9
- Journal Title
- ADVANCED MATERIALS
- Volume
- 33
- Number
- 15
- Start Page
- 1
- End Page
- 9
- URI
- https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/146706
- DOI
- 10.1002/adma.202006601
- ISSN
- 0935-9648
- Abstract
- Growth of 2D van der Waals layered single-crystal (SC) films is highly desired not only to manifest the intrinsic physical and chemical properties of materials, but also to enable the development of unprecedented devices for industrial applications. While wafer-scale SC hexagonal boron nitride film has been successfully grown, an ideal growth platform for diatomic transition metal dichalcogenide (TMdC) films has not been established to date. Here, the SC growth of TMdC monolayers on a centimeter scale via the atomic sawtooth gold surface as a universal growth template is reported. The atomic tooth-gullet surface is constructed by the one-step solidification of liquid gold, evidenced by transmission electron microscopy. The anisotropic adsorption energy of the TMdC cluster, confirmed by density-functional calculations, prevails at the periodic atomic-step edge to yield unidirectional epitaxial growth of triangular TMdC grains, eventually forming the SC film, regardless of the Miller indices. Growth using the atomic sawtooth gold surface as a universal growth template is demonstrated for several TMdC monolayer films, including WS2, WSe2, MoS2, the MoSe2/WSe2 heterostructure, and W1-xMoxS2 alloys. This strategy provides a general avenue for the SC growth of diatomic van der Waals heterostructures on a wafer scale, to further facilitate the applications of TMdCs in post-silicon technology.
- Files in This Item
-
Go to Link
- Appears in
Collections - 이과대학 > 화학과 > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.