Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

데이타 웨어하우스에서 데이타 큐브를 위한 효율적인 점진적 관리 기법An Efficient Incremental Maintenance Method for Data Cubes in Data Warehouses

Other Titles
An Efficient Incremental Maintenance Method for Data Cubes in Data Warehouses
Authors
이기용박창섭김명호
Issue Date
Apr-2006
Publisher
한국정보과학회
Citation
정보과학회논문지 : 데이타베이스, v.33, no.2, pp.175 - 187
Journal Title
정보과학회논문지 : 데이타베이스
Volume
33
Number
2
Start Page
175
End Page
187
URI
https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/148618
ISSN
1229-7739
Abstract
데이타 큐브는 차원 애트리뷰트의 모든 가능한 조합에 대해 데이타를 집단화하는 연산자이다. 차원 애트리뷰트의 수가 n일 때, 데이타 큐브는 2n개의 group-by를 계산한다. 데이타 큐브에 포함된 각각의 group-by를 큐보이드(cuboid)라 부른다. 데이타 큐브는 흔히 미리 계산되어 형태 뷰(materialized view)의 형태로 데이타 웨어하우스에 저장된다. 이러한 데이타 큐브는 소스 릴레이션이 변경되면 이를 반영하기 위해 갱신되어야 한다. 데이타 큐브의 점진적 관리는 데이타 큐브의 변경될 내용만을 계산하여 이를 데이타 큐브에 반영하는 방법을 의미한다. 2n개의 큐보이드로 이루어진 큐브의 변경될 내용을 계산하기 위하여, 기존의 방법들은 데이타 큐브와 동일한 개수의 큐보이드를 가지는 변경 큐브를 계산한다. 따라서, 차원 애트리뷰트의 수가 증가할수록 변경 큐브를 계산하는 비용이 매우 커지게 된다. 변경 큐브에 포함된 각 큐보이드들을 변경 큐보이드(delta cuboid)라 부른다. 본 논문에서는 2n개의 변경 큐보이드 대신 nCn/2개의 변경 큐보이드만을 사용하여 데이타 큐브를 갱신하는 방법을 제안한다. 이에 따라 제안하는 방법은 변경 큐브를 계산하는 비용을 크게 줄일 수 있다. 성능 평가 결과는 제안하는 방법이 기존의 방법에 비해 더 좋은 성능을 가지고 있음을 보여준다.
Files in This Item
Go to Link
Appears in
Collections
공과대학 > 소프트웨어학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Ki Yong photo

Lee, Ki Yong
공과대학 (소프트웨어학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE