Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Task Partitioning for Migration with Collaborative Edge Computing in Vehicular Networks

Authors
Moon, SungwonLim, Yujin
Issue Date
Oct-2021
Publisher
Institute of Electrical and Electronics Engineers Inc.
Keywords
Load balancing; Multi-access edge computing; Task migration; Task partitioning
Citation
Proceedings of the 3rd IEEE Eurasia Conference on IOT, Communication and Engineering 2021, ECICE 2021, pp 102 - 107
Pages
6
Journal Title
Proceedings of the 3rd IEEE Eurasia Conference on IOT, Communication and Engineering 2021, ECICE 2021
Start Page
102
End Page
107
URI
https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/151303
DOI
10.1109/ECICE52819.2021.9645624
ISSN
0000-0000
Abstract
Multi-access edge computing (MEC) is considered a promising technology to facilitate mission-critical vehicular applications, such as automatic driving, path-planning, and navigation. By offloading delay-sensitive or computation-intensive tasks from vehicles to MEC servers (MECSs), edge computing significantly enhances the computing capacity of vehicles with limited computing resources. However, MECSs may have uneven loads as vehicles are not evenly distributed across MEC systems and vehicles do not offload their tasks evenly. As a result, those offloaded tasks have high latency or be blocked. In addition, service interruption would happen frequently due to task migration caused by the high mobility. Due to the high mobility of vehicles and load dynamics at MECSs, computation tasks can migrate simultaneously to a particular MECS or migrate to a heavily congested MECS. Therefore, it is challenging to determine the migration decision, i.e., whether/where to migrate, among MECSs. In conventional methods, computation tasks are fully migrated to the MECS corresponding to the vehicle's trajectory. By contrast, in this study, tasks are migrated partially or fully to other MECSs in the collaborative edge computing system. To reduce the task execution latency and improve the system throughput, the proposed method selects a MECS that optimizes load balancing among MECSs and partitions the task to migrate for the MECS. Through simulations, compared with the conventional methods, the proposed method can increase the satisfaction of quality of service (QoS) requirements and MEC system throughput by optimizing the load balancing and task partitioning. © 2021 IEEE.
Files in This Item
Go to Link
Appears in
Collections
ICT융합공학부 > IT공학전공 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lim, Yu Jin photo

Lim, Yu Jin
공과대학 (인공지능공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE