Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Site-selective doping mechanisms for the enhanced photocatalytic activity of tin oxide nanoparticles

Authors
Jang, Woo-SungJin, YeongrokKim, Young-HoonYang, Sang-HyeokKim, Seon JeHong, Jung A.Baik, JaeyoonLee, JaekwangLee, HangilKim, Young-Min
Issue Date
May-2022
Publisher
Elsevier B.V.
Keywords
Atomic defect; Doping; Lattice strain; Metal oxide nanoparticle; Oxygen vacancy
Citation
Applied Catalysis B: Environmental, v.305, pp 1 - 10
Pages
10
Journal Title
Applied Catalysis B: Environmental
Volume
305
Start Page
1
End Page
10
URI
https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/151316
DOI
10.1016/j.apcatb.2022.121083
ISSN
0926-3373
1873-3883
Abstract
The addition of transition metal dopants into metal oxide nanoparticles (MO NPs) is an universal strategy to engineer the electronic and chemical properties of NPs. Although doping phenomena strongly rely on interactions with compositional and electronic degrees of freedom, fully understanding the site-specific doping behavior in the lattice framework of MO NP on atomic scale remains challenging. Here, we directly resolve the atomic site-selective (substitutional or interstitial) doping behaviors of Cr and Fe in SnO2, revealing their different roles in photocatalytic activities. Atomic-resolution microscopy combined with spectroscopy reveals two contrasting doping behaviors: Cr3+ substitutes for Sn4+ associated with the formation of oxygen vacancies, whereas Fe3+ occupies interstitial sites accompanied by lattice strain. Theoretical calculations indicate that substitutional dopant-vacancy cooperation and interstitial dopant-strain coupling can be energetically favorable routes for enhancing catalytic properties. Our results provide fundamental insights into atomic-scale doping mechanisms and engineering strategies for high-performance doped MO NPs. © 2022 Elsevier B.V.
Files in This Item
There are no files associated with this item.
Appears in
Collections
이과대학 > 화학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Han Gil photo

Lee, Han Gil
이과대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE