Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

DeepPhaseCut: Deep Relaxation in Phase for Unsupervised Fourier Phase Retrieval

Full metadata record
DC FieldValueLanguage
dc.contributor.authorCha, Eunju-
dc.contributor.authorLee, Chanseok-
dc.contributor.authorJang, Mooseok-
dc.contributor.authorYe, Jong Chul-
dc.date.accessioned2022-11-30T05:40:05Z-
dc.date.available2022-11-30T05:40:05Z-
dc.date.issued2022-12-
dc.identifier.issn0162-8828-
dc.identifier.issn1939-3539-
dc.identifier.urihttps://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/151424-
dc.description.abstractFourier phase retrieval is a classical problem of restoring a signal only from the measured magnitude of its Fourier transform. Although Fienup-type algorithms, which use prior knowledge in both spatial and Fourier domains, have been widely used in practice, they can often stall in local minima. Convex relaxation methods such as PhaseLift and PhaseCut may offer performance guarantees, but these algorithms are usually computationally expensive for practical use. To address this problem, here we propose a novel unsupervised feed-forward neural network for Fourier phase retrieval which generates high quality reconstruction immediately. Unlike the existing deep learning approaches that use a neural network as a regularization term or an end-to-end blackbox model for supervised training, our algorithm is a feed-forward neural network implementation of physics-driven constraints in an unsupervised learning framework. Specifically, our network is composed of two generators: one for the phase estimation using PhaseCut loss, followed by another generator for image reconstruction, all of which are trained simultaneously without matched data. The link to the classical Fienup-type algorithms and the recent symmetry-breaking learning approach is also revealed. Extensive experiments demonstrate that the proposed method outperforms all existing approaches in Fourier phase retrieval problems.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.titleDeepPhaseCut: Deep Relaxation in Phase for Unsupervised Fourier Phase Retrieval-
dc.typeArticle-
dc.publisher.locationUnited States-
dc.identifier.doi10.1109/tpami.2021.3138897-
dc.identifier.scopusid2-s2.0-85122306215-
dc.identifier.wosid000880661400098-
dc.identifier.bibliographicCitationIEEE Transactions on Pattern Analysis and Machine Intelligence, v.44, no.12, pp 9931 - 9943-
dc.citation.titleIEEE Transactions on Pattern Analysis and Machine Intelligence-
dc.citation.volume44-
dc.citation.number12-
dc.citation.startPage9931-
dc.citation.endPage9943-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9664359-
Files in This Item
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cha, Eunju photo

Cha, Eunju
첨단소재·전자융합공학부 (지능형전자시스템전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE