Complete stable minimal submanifolds with a parallel unit normal section in a Euclidean space
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Donghoon | - |
dc.contributor.author | Seo, Keomkyo | - |
dc.date.accessioned | 2024-09-30T07:00:22Z | - |
dc.date.available | 2024-09-30T07:00:22Z | - |
dc.date.issued | 2025-02 | - |
dc.identifier.issn | 0022-247X | - |
dc.identifier.issn | 1096-0813 | - |
dc.identifier.uri | https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/160472 | - |
dc.description.abstract | Let Σ be an n-dimensional complete stable minimal submanifold in Rn+p admitting a parallel unit normal section ν∈Γ(NΣ). We prove that if Σ has finite L2-norm of the second fundamental form Aν with respect to ν under an additional assumption on Aη for any unit normal section η∈Γ(NΣ) such that 〈ν,η〉=0, then Σ is an affine n-plane. We also obtain an upper bound for the fundamental tone of Σ under a certain condition on the second fundamental form. | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Academic Press Inc. | - |
dc.title | Complete stable minimal submanifolds with a parallel unit normal section in a Euclidean space | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1016/j.jmaa.2024.128784 | - |
dc.identifier.scopusid | 2-s2.0-85202776135 | - |
dc.identifier.wosid | 001317271700001 | - |
dc.identifier.bibliographicCitation | Journal of Mathematical Analysis and Applications, v.542, no.2 | - |
dc.citation.title | Journal of Mathematical Analysis and Applications | - |
dc.citation.volume | 542 | - |
dc.citation.number | 2 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | ISOPERIMETRIC-INEQUALITIES | - |
dc.subject.keywordPlus | SURFACES | - |
dc.subject.keywordPlus | HYPERSURFACES | - |
dc.subject.keywordPlus | STABILITY | - |
dc.subject.keywordPlus | THEOREMS | - |
dc.subject.keywordPlus | SOBOLEV | - |
dc.subject.keywordAuthor | Fundamental tone | - |
dc.subject.keywordAuthor | Parallel normal section | - |
dc.subject.keywordAuthor | Stable minimal submanifolds | - |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0022247X24007066?via%3Dihub | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Sookmyung Women's University. Cheongpa-ro 47-gil 100 (Cheongpa-dong 2ga), Yongsan-gu, Seoul, 04310, Korea02-710-9127
Copyright©Sookmyung Women's University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.