Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Complete stable minimal submanifolds with a parallel unit normal section in a Euclidean space

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Donghoon-
dc.contributor.authorSeo, Keomkyo-
dc.date.accessioned2024-09-30T07:00:22Z-
dc.date.available2024-09-30T07:00:22Z-
dc.date.issued2025-02-
dc.identifier.issn0022-247X-
dc.identifier.issn1096-0813-
dc.identifier.urihttps://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/160472-
dc.description.abstractLet Σ be an n-dimensional complete stable minimal submanifold in Rn+p admitting a parallel unit normal section ν∈Γ(NΣ). We prove that if Σ has finite L2-norm of the second fundamental form Aν with respect to ν under an additional assumption on Aη for any unit normal section η∈Γ(NΣ) such that 〈ν,η〉=0, then Σ is an affine n-plane. We also obtain an upper bound for the fundamental tone of Σ under a certain condition on the second fundamental form.-
dc.language영어-
dc.language.isoENG-
dc.publisherAcademic Press Inc.-
dc.titleComplete stable minimal submanifolds with a parallel unit normal section in a Euclidean space-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1016/j.jmaa.2024.128784-
dc.identifier.scopusid2-s2.0-85202776135-
dc.identifier.wosid001317271700001-
dc.identifier.bibliographicCitationJournal of Mathematical Analysis and Applications, v.542, no.2-
dc.citation.titleJournal of Mathematical Analysis and Applications-
dc.citation.volume542-
dc.citation.number2-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusISOPERIMETRIC-INEQUALITIES-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusHYPERSURFACES-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusTHEOREMS-
dc.subject.keywordPlusSOBOLEV-
dc.subject.keywordAuthorFundamental tone-
dc.subject.keywordAuthorParallel normal section-
dc.subject.keywordAuthorStable minimal submanifolds-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0022247X24007066?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
이과대학 > 수학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seo, Keom Kyo photo

Seo, Keom Kyo
이과대학 (수학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE