Structure of the chlorobenzene-argon dimer: Microwave spectrum and ab initio analysis
- Authors
- Oh, JJ; Park, I; Wilson, RJ; Peebles, SA; Kuczkowski, RL; Kraka, E; Cremer, D
- Issue Date
- Nov-2000
- Publisher
- AMER INST PHYSICS
- Citation
- JOURNAL OF CHEMICAL PHYSICS, v.113, no.20, pp 9051 - 9059
- Pages
- 9
- Journal Title
- JOURNAL OF CHEMICAL PHYSICS
- Volume
- 113
- Number
- 20
- Start Page
- 9051
- End Page
- 9059
- URI
- https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/16726
- DOI
- 10.1063/1.1319997
- ISSN
- 0021-9606
1089-7690
- Abstract
- The rotational spectra of the Cl-35 and Cl-37 isotopes of the chlorobenzene-argon van der Waals dimer have been assigned using Fourier transform microwave spectroscopy techniques. Rotational constants and chlorine nuclear quadrupole coupling constants were determined which confirm that the complex has C-s symmetry. The argon is over the aromatic ring, shifted from a position above the geometrical ring center towards the substituted carbon atom, and at a distance of about 3.68 Angstrom from it. This distance is 0.1-0.2 Angstrom shorter than the similar distance in the benzene-argon and fluorobenzene-argon complexes. Experimental results are confirmed and explained with the help of second-order Moller-Plesset perturbation calculations using a VDZP+diff basis set. The complex binding energy of the chlorobenzene-argon complex is 1.28 kcal/mol (fluorobenzene-argon, 1.17; benzene-argon, 1.12 kcal/mol) reflecting an increase in stability caused by larger dispersion interactions when replacing one benzene H atom by F or by Cl. The structure and stability of Ar .C6H5-X complexes are explained in terms of a balance between stabilizing dispersion and destabilizing exchange repulsion interactions between the monomers. (C) 2000 American Institute of Physics. [S0021-9606(00)01644-5].
- Files in This Item
-
Go to Link
- Appears in
Collections - Science > Department of Chemistry > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.