Detailed Information

Cited 0 time in webofscience Cited 3 time in scopus
Metadata Downloads

Formation of TiO2@Carbon Core/Shell Nanocomposites from a Single Molecular Layer of Aromatic Compounds for Photocatalytic Hydrogen Peroxide Generation

Authors
Lee, TaehyungHoang Tran BuiYoo, JounghyunRa, MiraeHan, Seung HwanKim, WooyulKwon, Woosung
Issue Date
Nov-2019
Publisher
AMER CHEMICAL SOC
Keywords
carbon shells; TiO2; nanocomposites; photocatalysis; hydrogen peroxide
Citation
ACS APPLIED MATERIALS & INTERFACES, v.11, no.44, pp.41196 - 41203
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
11
Number
44
Start Page
41196
End Page
41203
URI
https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/1735
DOI
10.1021/acsami.9b10015
ISSN
1944-8244
Abstract
In this article, we demonstrate that TiO2@carbon core/shell (TiO(2)pC) nanocomposite photocatalysts prepared by carbonizing a single molecular layer of aromatic compounds adsorbed on the surface of TiO2 nanoparticles selectively enhance the generation of hydrogen peroxide (H2O2). Atomically thin carbon shells have been formed directly on the surface of TiO2 nanoparticles through pyrolytic decarboxylation of the adsorbed aromatic compounds, benzoic acid (BA), and 1-naphthoic acid (NA), which yields two types of TiO2@C nanocomposites, TiO2@C(BA) and TiO2@C(NA). Raman spectroscopy shows that the as-obtained nanocomposites have similar degrees of graphitization (D/G band ratio), regardless of the type of aromatic precursors, but TiO2@C(NA) contains more oxygenic species than TiO2@C(BA) (D*/G band ratio). Such oxygenic species predominantly exist in the form of epoxide groups, as determined by attenuated total reflection infrared spectroscopy. The sp(2) carbon atoms near the epoxide groups in the carbon shell can act as active sites for the two-electron reduction of O-2. Therefore, TiO2@C(NA) can generate H2O2 more efficiently than TiO2@C(BA). Furthermore, the carbon shells retard the reconsumption of the generated H2O2 by inhibiting the adsorption of H2O2 on the surface of TiO2 nanoparticles, thereby improving the photocatalytic efficiency of H2O2 generation. Finally, we have shown the durability and reproducibility of our TiO2@C-based photocatalytic systems. We believe that our research may offer a potentially improved strategy for H2O2 generation and other photocatalytic applications.
Files in This Item
Go to Link
Appears in
Collections
공과대학 > 화공생명공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kwon, Woosung photo

Kwon, Woosung
공과대학 (화공생명공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE