Detailed Information

Cited 7 time in webofscience Cited 8 time in scopus
Metadata Downloads

High-dimensional Markowitz portfolio optimization problem: empirical comparison of covariance matrix estimators

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Young-Geun-
dc.contributor.authorLim, Johan-
dc.contributor.authorChoi, Sujung-
dc.date.available2021-02-22T05:28:46Z-
dc.date.issued2019-05-
dc.identifier.issn0094-9655-
dc.identifier.issn1563-5163-
dc.identifier.urihttps://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/1843-
dc.description.abstractWe compare the performance of recently developed regularized covariance matrix estimators for Markowitz's portfolio optimization and of the minimum variance portfolio (MVP) problem in particular. We focus on seven estimators that are applied to the MVP problem in the literature; three regularize the eigenvalues of the sample covariance matrix, and the other four assume the sparsity of the true covariance matrix or its inverse. Comparisons are made with two sets of long-term S&P 500 stock return data that represent two extreme scenarios of active and passive management. The results show that the MVPs with sparse covariance estimators have high Sharpe ratios but that the naive diversification (also known as the ‘uniform (on market share) portfolio’) still performs well in terms of wealth growth.-
dc.format.extent23-
dc.language영어-
dc.language.isoENG-
dc.publisherTAYLOR FRANCIS LTD-
dc.titleHigh-dimensional Markowitz portfolio optimization problem: empirical comparison of covariance matrix estimators-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1080/00949655.2019.1577855-
dc.identifier.scopusid2-s2.0-85061435253-
dc.identifier.wosid000462471100008-
dc.identifier.bibliographicCitationJOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, v.89, no.7, pp 1278 - 1300-
dc.citation.titleJOURNAL OF STATISTICAL COMPUTATION AND SIMULATION-
dc.citation.volume89-
dc.citation.number7-
dc.citation.startPage1278-
dc.citation.endPage1300-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassssci-
dc.description.journalRegisteredClassscopus-
dc.identifier.urlhttps://www.tandfonline.com/doi/abs/10.1080/00949655.2019.1577855?journalCode=gscs20-
Files in This Item
Go to Link
Appears in
Collections
이과대학 > 통계학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE