Detailed Information

Cited 0 time in webofscience Cited 2 time in scopus
Metadata Downloads

The copula directional dependence by stochastic volatility models

Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Jong-Min-
dc.contributor.authorHwang, S. Y.-
dc.date.available2021-02-22T06:45:38Z-
dc.date.created2020-09-03-
dc.date.issued2019-04-
dc.identifier.issn0361-0918-
dc.identifier.urihttps://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/3700-
dc.description.abstractThis paper proposes a copula directional dependence by using a bivariate Gaussian copula beta regression with Stochastic Volatility (SV) models for marginal distributions. With the asymmetric copula generated by the composition of two Plackett copulas, we show that our SV copula directional dependence by the Gaussian copula beta regression model is superior to the Kim and Hwang (2016) copula directional dependence by an asymmetric GARCH model in terms of the percent relative efficiency of bias and mean squared error. To validate our proposed method with the real data, we use Brent Crude Daily Price (BRENT), West Texas Intermediate Daily Price (WTI), the Standard & Poor's 500 (SP) and US 10-Year Treasury Constant Maturity Rate (TCM) so that our copula SV directional dependence is overall superior to the Kim and Hwang (2016) copula directional dependence by an asymmetric GARCH model in terms of precision by the percent relative efficiency of mean squared error. In terms of forecasting using the real financial data, we also show that the Bayesian SV model of the uniform transformed data by a copula conditional distribution yields an improvement on the volatility models such as GARCH and SV.-
dc.language영어-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.titleThe copula directional dependence by stochastic volatility models-
dc.typeArticle-
dc.contributor.affiliatedAuthorHwang, S. Y.-
dc.identifier.doi10.1080/03610918.2017.1406512-
dc.identifier.scopusid2-s2.0-85041838351-
dc.identifier.wosid000469998200013-
dc.identifier.bibliographicCitationCOMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, v.48, no.4, pp.1153 - 1175-
dc.relation.isPartOfCOMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION-
dc.citation.titleCOMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION-
dc.citation.volume48-
dc.citation.number4-
dc.citation.startPage1153-
dc.citation.endPage1175-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryStatistics & Probability-
dc.subject.keywordPlusGARCH MODEL-
dc.subject.keywordPlusREGRESSION-
dc.subject.keywordPlusINFERENCE-
dc.subject.keywordAuthorBeta regression model-
dc.subject.keywordAuthorCopula-
dc.subject.keywordAuthorDirectional dependence-
dc.subject.keywordAuthorStochastic volatility model-
dc.identifier.urlhttps://www.tandfonline.com/doi/full/10.1080/03610918.2017.1406512-
Files in This Item
Go to Link
Appears in
Collections
이과대학 > 통계학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hwang, Sun Young photo

Hwang, Sun Young
이과대학 (통계학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE