Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

그룹특징기반 슬라이딩 윈도우 클러스터링에서의 k-means와 k-medoids 비교 평가Comparison between k-means and k-medoids Algorithms for a Group-Feature based Sliding Window Clustering

Other Titles
Comparison between k-means and k-medoids Algorithms for a Group-Feature based Sliding Window Clustering
Authors
양주연심준호
Issue Date
Aug-2018
Publisher
한국전자거래학회
Keywords
Clustering; Data Streams; Sliding Window; K-medoids; 클러스터링; 데이터 스트림; 슬라이딩 윈도우; K-중간점
Citation
한국전자거래학회지, v.23, no.3, pp 225 - 237
Pages
13
Journal Title
한국전자거래학회지
Volume
23
Number
3
Start Page
225
End Page
237
URI
https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/4367
DOI
10.7838/jsebs.2018.23.3.225
ISSN
2288-3908
Abstract
대용량 데이터의 발생과 처리가 대중화되면서 대용량 데이터 스트림 처리에 대한 수요가 급격하게 증가하고 있다. 이 수요에 따라 다양한 대용량 데이터 처리 기술이 개발되고 있다. 한 분야로 주목받고 있는 방식은 슬라이딩 윈도우를 사용한 데이터 스트림 클러스터링이다. 슬라이딩 윈도우를 사용한 데이터 스트림 클러스터링은 윈도우가 이동할 때마다 새로운 클러스터를 생성한다. 기존의 슬라이딩 윈도우 상의 클러스터링 기법은 코어셋(Coreset)을 기반으로 데이터 스트림 클러스터링을 구현하고 있다. 이 연구에서는 코어셋을 활용한 그룹특징을 이용한 알고리즘 내에서 이용하는 클러스터링 알고리즘을 변경하였다. 그리고 이를 통해 제안 알고리즘과 기존 알고리즘의 파라미터 값 변화에 따른 성능 비교 실험을 진행하였다. 개선된 사항에 대해 논하여 두 알고리즘을 비교하고 실험자에게 파라미터에 따른 이용 방향을 제시한다.
Files in This Item
Go to Link
Appears in
Collections
공과대학 > 소프트웨어학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shim, Junho photo

Shim, Junho
공과대학 (소프트웨어학부(첨단))
Read more

Altmetrics

Total Views & Downloads

BROWSE