A survey on density-based clustering algorithms
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Loh W.-K. | - |
dc.contributor.author | Park Y.-H. | - |
dc.date.available | 2021-02-22T10:55:04Z | - |
dc.date.created | 2020-09-02 | - |
dc.date.issued | 2014 | - |
dc.identifier.issn | 1876-1100 | - |
dc.identifier.uri | https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/6172 | - |
dc.description.abstract | Density-based clustering forms the clusters of densely gathered objects separated by sparse regions. In this paper, we survey the previous and recent density-based clustering algorithms. DBSCAN [6], OPTICS [1], and DENCLUE [5, 6] are previous representative density-based clustering algorithms. Several recent algorithms such as PDBSCAN [8], CUDA-DClust [3], and GSCAN [7] have been proposed to improve the performance of DBSCAN. They make the most of multi-core CPUs and GPUs. © Springer-Verlag Berlin Heidelberg 2014. | - |
dc.language | 영어 | - |
dc.language.iso | en | - |
dc.language.iso | en | - |
dc.publisher | Springer Verlag | - |
dc.title | A survey on density-based clustering algorithms | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Park Y.-H. | - |
dc.identifier.doi | 10.1007/978-3-642-41671-2_98 | - |
dc.identifier.scopusid | 2-s2.0-84958534116 | - |
dc.identifier.bibliographicCitation | Lecture Notes in Electrical Engineering, v.280 LNEE, pp.775 - 780 | - |
dc.relation.isPartOf | Lecture Notes in Electrical Engineering | - |
dc.citation.title | Lecture Notes in Electrical Engineering | - |
dc.citation.volume | 280 LNEE | - |
dc.citation.startPage | 775 | - |
dc.citation.endPage | 780 | - |
dc.type.rims | ART | - |
dc.type.docType | Conference Paper | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Information technology | - |
dc.subject.keywordPlus | Program processors | - |
dc.subject.keywordPlus | Surveys | - |
dc.subject.keywordPlus | Density-based Clustering | - |
dc.subject.keywordPlus | Density-based clustering algorithms | - |
dc.subject.keywordPlus | Multi-core cpus | - |
dc.subject.keywordPlus | Clustering algorithms | - |
dc.identifier.url | https://link.springer.com/chapter/10.1007%2F978-3-642-41671-2_98 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Sookmyung Women's University. Cheongpa-ro 47-gil 100 (Cheongpa-dong 2ga), Yongsan-gu, Seoul, 04310, Korea 02-710-9127
Copyright©Sookmyung Women's University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.