Detailed Information

Cited 0 time in webofscience Cited 105 time in scopus
Metadata Downloads

Improving Performance and Stability of Flexible Planar-Heterojunction Perovskite Solar Cells Using Polymeric Hole-Transport Material

Authors
Jo, Jea WoongSeo, Myung-SeokPark, MinwooKim, Jae-YupPark, Joon SuhHan, Il KiAhn, HyungjuJung, Jae WoongSohn, Byeong-HyeokKo, Min JaeSon, Hae Jung
Issue Date
Jul-2016
Publisher
WILEY-V C H VERLAG GMBH
Keywords
conjugated polymer; flexible electronics; hole-transport layer; interfacial engineering; perovskite solar cell
Citation
ADVANCED FUNCTIONAL MATERIALS, v.26, no.25, pp 4464 - 4471
Pages
8
Journal Title
ADVANCED FUNCTIONAL MATERIALS
Volume
26
Number
25
Start Page
4464
End Page
4471
URI
https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/9728
DOI
10.1002/adfm.201600746
ISSN
1616-301X
1616-3028
Abstract
For realizing flexible perovskite solar cells (PSCs), it is important to develop low-temperature processable interlayer materials with excellent charge transporting properties. Herein, a novel polymeric hole-transport material based on 1,4-bis(4-sulfonatobutoxy)benzene and thiophene moieties (PhNa-1T) and its application as a hole-transport layer (HTL) material of high-performance inverted-type flexible PSCs are introduced. Compared with the conventionally used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the incorporation of PhNa-1T into HTL of the PSC device is demonstrated to be more effective for improving charge extraction from the perovskite absorber to the HTL and suppressing charge recombination in the bulk perovskite and HTL/perovskite interface. As a result, the flexible PSC using PhNa-1T achieves high photovoltaic performances with an impressive power conversion efficiency of 14.7%. This is, to the best of our knowledge, among the highest performances reported to date for inverted-type flexible PSCs. Moreover, the PhNa-1T-based flexible PSC shows much improved stability under an ambient condition than PEDOT:PSS-based PSC. It is believed that PhNa-1T is a promising candidate as an HTL material for high-performance flexible PSCs.
Files in This Item
Go to Link
Appears in
Collections
공과대학 > 화공생명공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Minwoo photo

Park, Minwoo
공과대학 (화공생명공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE