Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space

Full metadata record
DC Field Value Language
dc.contributor.authorSeo, Keomkyo-
dc.date.available2021-02-22T11:27:46Z-
dc.date.issued2016-04-
dc.identifier.issn1025-5834-
dc.identifier.issn1029-242X-
dc.identifier.urihttps://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/9866-
dc.description.abstractLet M be a complete minimal hypersurface in hyperbolic space Hn+1 (-1) with constant sectional curvature -1. We prove that if M has a finite index and finite L-2 norm of the second fundamental form, then the fundamental tone lambda(1)(M) is bounded above by n(2) .-
dc.language영어-
dc.language.isoENG-
dc.publisherSPRINGER INTERNATIONAL PUBLISHING AG-
dc.titleFundamental tone of minimal hypersurfaces with finite index in hyperbolic space-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.1186/s13660-016-1071-7-
dc.identifier.scopusid2-s2.0-85008402623-
dc.identifier.wosid000374912800001-
dc.identifier.bibliographicCitationJOURNAL OF INEQUALITIES AND APPLICATIONS, v.2016, no.1-
dc.citation.titleJOURNAL OF INEQUALITIES AND APPLICATIONS-
dc.citation.volume2016-
dc.citation.number1-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusBOUNDED MEAN-CURVATURE-
dc.subject.keywordPlusRIEMANNIAN-MANIFOLDS-
dc.subject.keywordPlusSUBMANIFOLDS-
dc.subject.keywordPlusINEQUALITIES-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordAuthorminimal hypersurface-
dc.subject.keywordAuthorfinite index-
dc.subject.keywordAuthorhyperbolic space-
dc.subject.keywordAuthorfundamental tone-
dc.subject.keywordAuthoreigenvalue-
dc.identifier.urlhttps://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-016-1071-7-
Files in This Item
Go to Link
Appears in
Collections
이과대학 > 수학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seo, Keom Kyo photo

Seo, Keom Kyo
이과대학 (수학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE