Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Machine Learning Enabled Wireless Intracranial Brain Deformation Sensing System

Full metadata record
DC FieldValueLanguage
dc.contributor.authorIslam, S.-
dc.contributor.authorShah, V.-
dc.contributor.authorGidde, S. T. R.-
dc.contributor.authorHutapea, P.-
dc.contributor.authorSong, Seung Hyun-
dc.contributor.authorPicone, J.-
dc.contributor.authorKim, A.-
dc.date.available2021-02-19T07:13:05Z-
dc.date.issued2020-12-
dc.identifier.issn0018-9294-
dc.identifier.issn1558-2531-
dc.identifier.urihttps://scholarworks.sookmyung.ac.kr/handle/2021.sw.sookmyung/815-
dc.description.abstractA leading cause of traumatic brain injury (TBI) is intracranial brain deformation due to mechanical impact. This deformation is viscoelastic and differs from a traditional rigid transformation. In this paper, we describe a machine learning enabled wireless sensing system that predicts the trajectory of intracranial brain deformation. The sensing system consists of an implantable soft magnet and an external magnetic sensor array with a sensing volume of 12 x 12 x 4 mm(3). Machine learning algorithm predicts the brain deformation by interpreting the magnetic sensor outputs created by the change in position of the implanted soft magnet. Three different machine learning models were trained on calibration data: (1) random forests, (2) k-nearest neighbors, and (3) a multi-layer perceptron-based neural network. These models were validated using both in vitro (a needle inserted into PVC gel) and in vivo (blast exposure to live and dead rat brains) experiments. The in vitro gel deformation predicted by these machine learning models showed excellent agreement with the camera measurements and had absolute error = 138 mu m, Frechet distance = 372 mu m with normalized Procrustes disparity = 0.034. The in vivo brain deformation predicted by these models had absolute error = 50 mu m, Frechet distance = 95 mu m with normalized Procrustes disparity = 0.055 for dead animal and absolute error = 125 mu m, Frechet distance = 289 mu m with normalized Procrustes disparity = 0.2 for live animal respectively. These results suggest that the proposed machine learning enabled sensor system can be an effective tool for measuring in situ brain deformation.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleA Machine Learning Enabled Wireless Intracranial Brain Deformation Sensing System-
dc.typeArticle-
dc.publisher.locationUnited States-
dc.identifier.doi10.1109/TBME.2020.2990071-
dc.identifier.scopusid2-s2.0-85096508893-
dc.identifier.wosid000591819700024-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, v.67, no.12, pp 3521 - 3530-
dc.citation.titleIEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING-
dc.citation.volume67-
dc.citation.number12-
dc.citation.startPage3521-
dc.citation.endPage3530-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.subject.keywordPlusMODELS-
dc.subject.keywordPlusINJURY-
dc.subject.keywordPlusTISSUE-
dc.subject.keywordAuthorMagnetic tunneling-
dc.subject.keywordAuthorSoft magnetic materials-
dc.subject.keywordAuthorStrain-
dc.subject.keywordAuthorSensors-
dc.subject.keywordAuthorBrain modeling-
dc.subject.keywordAuthorMagnetic field measurement-
dc.subject.keywordAuthorCalibration-
dc.subject.keywordAuthorTraumatic brain injury-
dc.subject.keywordAuthorbrain deformation measurement-
dc.subject.keywordAuthormagnetic field measurement-
dc.subject.keywordAuthormagnetic sensors-
dc.subject.keywordAuthormachine learning-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/9076812-
Files in This Item
Go to Link
Appears in
Collections
ICT융합공학부 > 전자공학전공 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Song, Seung Hyun photo

Song, Seung Hyun
첨단소재·전자융합공학부 (지능형전자시스템전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE