Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Role of PVDF in Rheology and Microstructure of NCM Cathode Slurries for Lithium-Ion Battery

Full metadata record
DC Field Value Language
dc.contributor.authorSung, Sang Hoon-
dc.contributor.authorKim, Sunhyung-
dc.contributor.authorPark, Jeong Hoon-
dc.contributor.authorJun Dong, Park-
dc.contributor.authorAhn, Kyung Hyun-
dc.date.available2021-02-22T05:21:45Z-
dc.date.issued2020-10-
dc.identifier.issn1996-1944-
dc.identifier.issn1996-1944-
dc.identifier.urihttps://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/1145-
dc.description.abstractA binder plays a critical role in dispersion of coating liquids and the quality of coating. Poly(vinylidene fluoride) (PVDF) is widely used as a binder in cathode slurries; however, its role as a binder is still under debate. In this paper, we study the role of PVDF on the rheology of cathode battery slurries consisting of Li(Ni1/3Mn1/3Co1/3)O-2 (NCM), carbon black (CB) and N-methyl-2-pyrrolidone (NMP). Rheology and microstructure of cathode slurries are systemically investigated with three model suspensions: CB/PVDF/NMP, NCM/PVDF/NMP and NCM/CB/PVDF/NMP. To highlight the role of PVDF in cathode slurries, we prepare the same model suspensions by replacing PVDF with PVP, and we compare the role of PVDF to PVP in the suspension rheology. We find that PVDF adsorbs neither onto NCM nor CB surface, which can be attributed to its poor affinity to NCM and CB. Rheological measurements suggest that PVDF mainly increases matrix viscosity in the suspension without affecting the microstructure formed by CB and NCM particles. In contrast to PVDF, PVP stabilizes the structure of CB and NCM in the model suspensions, as it is adsorbed on the CB surface. This study will provide a useful insight to fundamentally understand the rheology of cathode slurries.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI-
dc.titleRole of PVDF in Rheology and Microstructure of NCM Cathode Slurries for Lithium-Ion Battery-
dc.typeArticle-
dc.publisher.locationSwitzerland-
dc.identifier.doi10.3390/ma13204544-
dc.identifier.scopusid2-s2.0-85094585126-
dc.identifier.wosid000583008900001-
dc.identifier.bibliographicCitationMATERIALS, v.13, no.20, pp 1 - 11-
dc.citation.titleMATERIALS-
dc.citation.volume13-
dc.citation.number20-
dc.citation.startPage1-
dc.citation.endPage11-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.urlhttps://www.mdpi.com/1996-1944/13/20/4544-
Files in This Item
Go to Link
Appears in
Collections
공과대학 > 화공생명공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jun Dong, Park photo

Jun Dong, Park
공과대학 (화공생명공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE