Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Skin-Inspired Thermometer Enabling Contact-Independent Temperature Sensation via a Seebeck-Resistive Bimodal System

Full metadata record
DC Field Value Language
dc.contributor.authorCha, Youngsun-
dc.contributor.authorSeo, Byungseok-
dc.contributor.authorChung, Myoungkil-
dc.contributor.authorKim, Brian S. Y.-
dc.contributor.authorChoi, Wonjoon-
dc.contributor.authorPark, Woosung-
dc.date.accessioned2023-11-08T09:48:30Z-
dc.date.available2023-11-08T09:48:30Z-
dc.date.issued2022-04-
dc.identifier.issn1944-8244-
dc.identifier.issn1944-8252-
dc.identifier.urihttps://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/152835-
dc.description.abstractTactile sensation is a powerful method for probing the temperature of an arbitrary object due to its intuitive operating mechanism. However, the disruptive interface commonly formed between the thermometer and the object gives rise to thermal contact resistance, which is the primary source of measurement inaccuracy. Here, we develop a bioinspired bimodal temperature sensor exhibiting robust measurement accuracy by precisely decoupling contact resistance from the associated thermal circuit. In our sensors, a micropatterned resistive thermometer is placed underneath a thermoelectric heat fluxmeter, which resembles thermoreceptors located in human biomembranes. The object temperature is probed by modulating the thermometer temperature within the sensor system and precisely extrapolating the zero-heat flux point of the Seebeck voltage developed across the fluxmeter. At this zero-heat flux point, the object and thermometer temperatures coincide with each other regardless of the contact resistance formed at the fluxmeter-object interface. An experimental study shows that our sensors display excellent measurement accuracy within similar to 0.5 K over a wide range of contact resistance values. Our work opens up new avenues for highly sensitive tactile thermal sensation in thermal haptics, medical devices, and robotics if combined with flexible devices.-
dc.format.extent7-
dc.language영어-
dc.language.isoENG-
dc.publisherAMER CHEMICAL SOC-
dc.titleSkin-Inspired Thermometer Enabling Contact-Independent Temperature Sensation via a Seebeck-Resistive Bimodal System-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1021/acsami.1c24420-
dc.identifier.scopusid2-s2.0-85128514637-
dc.identifier.wosid000797959300092-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.14, no.15, pp 17920 - 17926-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume14-
dc.citation.number15-
dc.citation.startPage17920-
dc.citation.endPage17926-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusHEAT-FLUX-
dc.subject.keywordPlusTHERMAL CONTACT-
dc.subject.keywordPlusTHERMOCOUPLES-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusSENSORS-
dc.subject.keywordAuthorskin-inspired-
dc.subject.keywordAuthorthermometer-
dc.subject.keywordAuthorthermoelectric-
dc.subject.keywordAuthorcontact resistance-
dc.subject.keywordAuthorheat flux meter-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 기계시스템학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE