Detailed Information

Cited 0 time in webofscience Cited 2 time in scopus
Metadata Downloads

Fabrication of Millimeter-Long Carbon Tubular Nanostructures Using the Self-Rolling Process Inherent in Elastic Protein Layers

Full metadata record
DC FieldValueLanguage
dc.contributor.authorKo, Hyojin-
dc.contributor.authorDeravi, Leila F.-
dc.contributor.authorPark, Sung-Jin-
dc.contributor.authorJang, Jingon-
dc.contributor.authorLee, Takhee-
dc.contributor.authorKang, Cheong-
dc.contributor.authorLee, Jin Seok-
dc.contributor.authorParker, Kevin Kit-
dc.contributor.authorShin, Kwanwoo-
dc.date.available2021-02-22T11:12:40Z-
dc.date.issued2017-08-
dc.identifier.issn0935-9648-
dc.identifier.issn1521-4095-
dc.identifier.urihttps://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/8225-
dc.description.abstractMillimeter-long conducting fibers can be fabricated from carbon nanomaterials via a simple method involving the release of a prestrained protein layer. This study shows how a self-rolling process initiated by polymerization of a micropatterned layer of fibronectin (FN) results in the production of carbon nanomaterial-based microtubular fibers. The process begins with deposition of carbon nanotube (CNT) or graphene oxide (GO) particles on the FN layer. Before polymerization, particles are discrete and nonconducting, but after polymerization the carbon materials become entangled to form an interconnected conducting network clad by FN. Selective removal of FN using high-temperature combustion yields freestanding CNT or reduced GO microtubular fibers. The properties of these fibers are characterized using atomic force microscopy and Raman spectroscopy. The data suggest that this method may provide a ready route to rapid design and fabrication of aligned biohybrid nanomaterials potentially useful for future electronic applications.-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleFabrication of Millimeter-Long Carbon Tubular Nanostructures Using the Self-Rolling Process Inherent in Elastic Protein Layers-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1002/adma.201701732-
dc.identifier.scopusid2-s2.0-85020513028-
dc.identifier.wosid000407565700024-
dc.identifier.bibliographicCitationADVANCED MATERIALS, v.29, no.31-
dc.citation.titleADVANCED MATERIALS-
dc.citation.volume29-
dc.citation.number31-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusNANOMEMBRANES-
dc.subject.keywordPlusACTUATORS-
dc.subject.keywordAuthorcarbon fibers-
dc.subject.keywordAuthorcarbon nanotubes-
dc.subject.keywordAuthorfibronectin-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthorstrain-driven self-rolling-
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/full/10.1002/adma.201701732-
Files in This Item
Go to Link
Appears in
Collections
이과대학 > 화학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE