Detailed Information

Cited 0 time in webofscience Cited 23 time in scopus
Metadata Downloads

Positive Regulation of Osteogenesis by Bile Acid Through FXR

Authors
Cho, Sun WookAn, Jee HyunPark, HyojungYang, Jae-YeonChoi, Hyung JinKim, Sang WanPark, Young JooKim, Seong YeonYim, MijungBaek, Wook-YoungKim, Jung-EunShin, Chan Soo
Issue Date
Oct-2013
Publisher
WILEY-BLACKWELL
Keywords
FXR (FARNESOID X RECEPTOR); BILE ACID; OSTEOBLAST DIFFERENTIATION; OVARIECTOMY
Citation
JOURNAL OF BONE AND MINERAL RESEARCH, v.28, no.10, pp 2109 - 2121
Pages
13
Journal Title
JOURNAL OF BONE AND MINERAL RESEARCH
Volume
28
Number
10
Start Page
2109
End Page
2121
URI
https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/11213
DOI
10.1002/jbmr.1961
ISSN
0884-0431
1523-4681
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor that functions as a bile acid sensor controlling bile acid homeostasis. We investigated the role of FXR in regulating bone metabolism. We identified the expression of FXR in calvaria and bone marrow cells, which gradually increased during osteoblastic differentiation in vitro. In male mice, deletion of FXR (FXR-/-) in vivo resulted in a significant reduction in bone mineral density by 4.3% to 6.6% in mice 8 to 20 weeks of age compared with FXR+/+ mice. Histological analysis of the lumbar spine showed that FXR deficiency reduced the bone formation rate as well as the trabecular bone volume and thickness. Moreover, tartrate-resistant acid phosphatase (TRACP) staining of the femurs revealed that both the osteoclast number and osteoclast surface were significantly increased in FXR-/- mice compared with FXR+/+ mice. At the cellular level, induction of alkaline phosphatase (ALP) activities was blunted in primary calvarial cells in FXR-/- mice compared with FXR+/+ mice in concert with a significant reduction in type I collagen a1(Col1a1), ALP, and runt-related transcription factor 2 (Runx2) gene expressions. Cultures of bone marrow-derived macrophages from FXR-/- mice exhibited an increased number of osteoclast formations and protein expression of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). In female FXR-/- mice, although bone mineral density (BMD) was not significantly different from that in FXR+/+ mice, bone loss was accelerated after an ovariectomy compared with FXR+/+ mice. In vitro, activation of FXR by bile acids (chenodeoxycholic acid [CDCA] or 6-ECDCA) or FXR agonists (GW4064 or Fexaramine) significantly enhanced osteoblastic differentiation through the upregulation of Runx2 and enhanced extracellular signal-regulated kinase (ERK) and -catenin signaling. FXR agonists also suppressed osteoclast differentiation from bone marrow macrophages. Finally, administration of a farnesol (FOH 1%) diet marginally prevented ovariectomy (OVX)-induced bone loss and enhanced bone mass gain in growing C57BL/6J mice. Taken together, these results suggest that FXR positively regulates bone metabolism through both arms of the bone remodeling pathways; ie, bone formation and resorption. (c) 2013 American Society for Bone and Mineral Research.
Files in This Item
There are no files associated with this item.
Appears in
Collections
약학대학 > 약학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yim, Mi Jung photo

Yim, Mi Jung
약학대학 (약학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE