Detailed Information

Cited 0 time in webofscience Cited 141 time in scopus
Metadata Downloads

EZH2 Generates a Methyl Degron that Is Recognized by the DCAF1/DDB1/CUL4 E3 Ubiquitin Ligase Complex

Authors
Lee, Ji MinLee, Jason S.Kim, HyunkyungKim, KyeongkyuPark, HyejinKim, Ji-YoungLee, Seung HoonKim, Ik SooKim, JoomyungLee, MinkyoungChung, Chin HaSeo, Sang-BeomYoon, Jong-BokKo, EunyoungNoh, Dong-YoungKim, Keun IlKim, Kyeong KyuBaek, Sung Hee
Issue Date
Nov-2012
Publisher
CELL PRESS
Citation
MOLECULAR CELL, v.48, no.4, pp 572 - 586
Pages
15
Journal Title
MOLECULAR CELL
Volume
48
Number
4
Start Page
572
End Page
586
URI
https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/11813
DOI
10.1016/j.molcel.2012.09.004
ISSN
1097-2765
1097-4164
Abstract
Ubiquitination plays a major role in protein degradation. Although phosphorylation-dependent ubiquitination is well known for the regulation of protein stability, methylation-dependent ubiquitination machinery has not been characterized. Here, we provide evidence that methylation-dependent ubiquitination is carried out by damage-specific DNA binding protein 1 (DDB1)/cullin4 (CUL4) E3 ubiquitin ligase complex and a DDB1-CUL4-associated factor 1 (DCAF1) adaptor, which recognizes monomethylated substrates. Molecular modeling and binding affinity studies reveal that the putative chromo domain of DCAF1 directly recognizes monomethylated substrates, whereas critical binding pocket mutations of the DCAF1 chromo domain ablated the binding from the monomethylated substrates. Further, we discovered that enhancer of zeste homolog 2 (EZH2) methyltransferase has distinct substrate specificities for histone H3K27 and nonhistones exemplified by an orphan nuclear receptor, ROR alpha. We propose that EZH2-DCAF1/DDB1/CUL4 represents a previously unrecognized methylation-dependent ubiquitination machinery specifically recognizing "methyl degron"; through this, nonhistone protein stability can be dynamically regulated in a methylation-dependent manner.
Files in This Item
There are no files associated with this item.
Appears in
Collections
이과대학 > 생명시스템학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Keun Il photo

Kim, Keun Il
이과대학 (생명시스템학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE