Distance bounds for algebraic geometric codes
- Authors
- Duursma, Iwan; Kirov, Radoslav; Park, Seungkook
- Issue Date
- Aug-2011
- Publisher
- ELSEVIER SCIENCE B.V.
- Citation
- JOURNAL OF PURE AND APPLIED ALGEBRA, v.215, no.8, pp 1863 - 1878
- Pages
- 16
- Journal Title
- JOURNAL OF PURE AND APPLIED ALGEBRA
- Volume
- 215
- Number
- 8
- Start Page
- 1863
- End Page
- 1878
- URI
- https://scholarworks.sookmyung.ac.kr/handle/2020.sw.sookmyung/12521
- DOI
- 10.1016/j.jpaa.2010.10.018
- ISSN
- 0022-4049
1873-1376
- Abstract
- Various methods have been used to obtain improvements of the Goppa lower bound for the minimum distance of an algebraic geometric code. The main methods divide into two categories, and all but a few of the known bounds are special cases of either the Lundell-McCullough floor bound or the Beelen order bound. The exceptions are recent improvements of the floor bound by Guneri, Stichtenoth, and Taskin, and by Duursma and Park, and of the order bound by Duursma and Park, and by Duursma and Kirov. In this paper, we provide short proofs for all floor bounds and most order bounds in the setting of the van Lint and Wilson AB method. Moreover, we formulate unifying theorems for order bounds and formulate the DP and DK order bounds as natural but different generalizations of the Feng-Rao bound for one-point codes.
- Files in This Item
-
Go to Link
- Appears in
Collections - 이과대학 > 수학과 > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.